The hull number of strong product graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 493-507

Voir la notice de l'article provenant de la source Library of Science

For a connected graph G with at least two vertices and S a subset of vertices, the convex hull [S]_G is the smallest convex set containing S. The hull number h(G) is the minimum cardinality among the subsets S of V(G) with [S]_G = V(G). Upper bound for the hull number of strong product G ⊠ H of two graphs G and H is obtainted. Improved upper bounds are obtained for some class of strong product graphs. Exact values for the hull number of some special classes of strong product graphs are obtained. Graphs G and H for which h(G⊠ H) = h(G)h(H) are characterized.
Keywords: strong product, geodetic number, hull number, extreme hull graph
@article{DMGT_2011_31_3_a5,
     author = {Santhakumaran, A. and Ullas Chandran, S.},
     title = {The hull number of strong product graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {493--507},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a5/}
}
TY  - JOUR
AU  - Santhakumaran, A.
AU  - Ullas Chandran, S.
TI  - The hull number of strong product graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 493
EP  - 507
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a5/
LA  - en
ID  - DMGT_2011_31_3_a5
ER  - 
%0 Journal Article
%A Santhakumaran, A.
%A Ullas Chandran, S.
%T The hull number of strong product graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 493-507
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a5/
%G en
%F DMGT_2011_31_3_a5
Santhakumaran, A.; Ullas Chandran, S. The hull number of strong product graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 493-507. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a5/