Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_3_a5, author = {Santhakumaran, A. and Ullas Chandran, S.}, title = {The hull number of strong product graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {493--507}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a5/} }
Santhakumaran, A.; Ullas Chandran, S. The hull number of strong product graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 493-507. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a5/
[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[2] G. B. Cagaanan and S.R. Canoy, Jr., On the hull sets and hull number of the Composition graphs, Ars Combin. 75 (2005) 113-119.
[3] G. Chartrand, F. Harary and P. Zhang, On the hull number of a graph, Ars Combin. 57 (2000) 129-138.
[4] G. Chartrand and P. Zhang, Extreme geodesic graphs, Czechoslovak Math. J. 52 (127) (2002) 771-780, doi: 10.1023/B:CMAJ.0000027232.97642.45.
[5] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007.
[6] G. Chartrand, J.F. Fink and P. Zhang, On the hull Number of an oriented graph, Int. J. Math. Math Sci. 36 (2003) 2265-2275, doi: 10.1155/S0161171203210577.
[7] G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill Edition, New Delhi, 2006).
[8] M.G. Everett and S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217-223, doi: 10.1016/0012-365X(85)90174-8.
[9] W. Imrich and S. Klavžar, Product graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).
[10] T. Jiang, I. Pelayo and D. Pritikin, Geodesic convexity and Cartesian product in graphs, manuscript.