Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_3_a3, author = {Santhakumaran, A. and Titus, P.}, title = {The connected forcing connected vertex detour number of a graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {461--473}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a3/} }
TY - JOUR AU - Santhakumaran, A. AU - Titus, P. TI - The connected forcing connected vertex detour number of a graph JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 461 EP - 473 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a3/ LA - en ID - DMGT_2011_31_3_a3 ER -
Santhakumaran, A.; Titus, P. The connected forcing connected vertex detour number of a graph. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 461-473. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a3/
[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[2] G. Chartrand, H. Escuadro and P. Zang, Detour Distance in Graphs, J. Combin. Math. Combin. Comput. 53 (2005) 75-94.
[3] G. Chartrand, F. Harary and P. Zang, On the geodetic number of a graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007.
[4] G. Chartrand, G.L. Johns and P. Zang, The Detour Number of a Graph, Utilitas Mathematica 64 (2003) 97-113.
[5] G. Chartrand, G.L. Johns and P. Zang, On the Detour Number and Geodetic Number of a Graph, Ars Combinatoria 72 (2004) 3-15.
[6] F. Harary, Graph Theory (Addison-Wesley, 1969).
[7] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17 (1993) 87-95, doi: 10.1016/0895-7177(93)90259-2.
[8] T. Mansour and M. Schork, Wiener, hyper-Wiener detour and hyper-detour indices of bridge and chain graphs, J. Math. Chem. 47 (2010) 72-98, doi: 10.1007/s10910-009-9531-7.
[9] A.P. Santhakumaran and P. Titus, Vertex Geodomination in Graphs, Bulletin of Kerala Mathematics Association 2 (2005) 45-57.
[10] A.P. Santhakumaran and P. Titus, On the Vertex Geodomination Number of a Graph, Ars Combinatoria, to appear.
[11] A.P. Santhakumaran and P. Titus, The Vertex Detour Number of a Graph, AKCE International Journal of Graphs and Combinatorics 4 (2007) 99-112.
[12] A.P. Santhakumaran and P. Titus, The Connected Vertex Geodomination Number of a Graph, Journal of Prime Research in Mathematics 5 (2009) 101-114.
[13] A.P. Santhakumaran and P. Titus, The Connected Vertex Detour Number of a Graph, communicated.
[14] A.P. Santhakumaran and P. Titus, The Upper Connected Vertex Detour Number of a Graph, communicated.