On the strong parity chromatic number
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 587-600
Voir la notice de l'article provenant de la source Library of Science
A vertex colouring of a 2-connected plane graph G is a strong parity vertex colouring if for every face f and each colour c, the number of vertices incident with f coloured by c is either zero or odd. Czap et al. in [9] proved that every 2-connected plane graph has a proper strong parity vertex colouring with at most 118 colours. In this paper we improve this upper bound for some classes of plane graphs.
Keywords:
plane graph, k-planar graph, vertex colouring, strong parity vertex colouring
@article{DMGT_2011_31_3_a12,
author = {Czap, J\'ulius and Jendro\v{l}, Stanislav and Kardo\v{s}, Franti\v{s}ek},
title = {On the strong parity chromatic number},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {587--600},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a12/}
}
TY - JOUR AU - Czap, Július AU - Jendroľ, Stanislav AU - Kardoš, František TI - On the strong parity chromatic number JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 587 EP - 600 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a12/ LA - en ID - DMGT_2011_31_3_a12 ER -
Czap, Július; Jendroľ, Stanislav; Kardoš, František. On the strong parity chromatic number. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 587-600. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a12/