Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_3_a12, author = {Czap, J\'ulius and Jendro\v{l}, Stanislav and Kardo\v{s}, Franti\v{s}ek}, title = {On the strong parity chromatic number}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {587--600}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a12/} }
TY - JOUR AU - Czap, Július AU - Jendroľ, Stanislav AU - Kardoš, František TI - On the strong parity chromatic number JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 587 EP - 600 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a12/ LA - en ID - DMGT_2011_31_3_a12 ER -
Czap, Július; Jendroľ, Stanislav; Kardoš, František. On the strong parity chromatic number. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 587-600. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a12/
[1] K. Appel and W. Haken, Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (1976) 711-712, doi: 10.1090/S0002-9904-1976-14122-5.
[2] O.V. Borodin, Solution of Ringel's problems on vertex-free coloring of plane graphs and coloring of 1-planar graphs,, Met. Diskret. Anal. 41 (1984) 12-26 (in Russian).
[3] O.V. Borodin, A new proof of the 6 color theorem, J. Graph Theory 19 (1995) 507-521, doi: 10.1002/jgt.3190190406.
[4] O.V. Borodin, D.P. Sanders and Y. Zhao, On cyclic coloring and their generalizations, Discrete Math. 203 (1999) 23-40, doi: 10.1016/S0012-365X(99)00018-7.
[5] P. Borowiecki, K. Budajová, S. Jendroľ and S. Krajci, Parity vertex colouring of graphs, Discuss. Math. Graph Theory 31 (2011) 183-195, doi: 10.7151/dmgt.1537.
[6] D.P. Bunde, K. Milans, D.B. West and H. Wu, Parity and strong parity edge-coloring of graphs, Congressus Numerantium 187 (2007) 193-213.
[7] J. Czap and S. Jendroľ, Colouring vertices of plane graphs under restrictions given by faces, Discuss. Math. Graph Theory 29 (2009) 521-543, doi: 10.7151/dmgt.1462.
[8] J. Czap, S. Jendroľ and F. Kardoš, Facial parity edge colouring, Ars Math. Contemporanea 4 (2011) 255-269.
[9] J. Czap, S. Jendroľ and M. Voigt, Parity vertex colouring of plane graphs, Discrete Math. 311 (2011) 512-520, doi: 10.1016/j.disc.2010.12.008.
[10] H. Enomoto and M. Hornák, A general upper bound for the cyclic chromatic number of 3-connected plane graphs, J. Graph Theory 62 (2009) 1-25, doi: 10.1002/jgt.20383.
[11] H. Enomoto, M. Hornák and S. Jendroľ, Cyclic chromatic number of 3-connected plane graphs, SIAM J. Discrete Math. 14 (2001) 121-137, doi: 10.1137/S0895480198346150.
[12] M. Hornák and J. Zl' amalová, Another step towards proving a conjecture by Plummer and Toft, Discrete Math. 310 (2010) 442-452, doi: 10.1016/j.disc.2009.03.016.
[13] T. Kaiser, O. Ruck'y, M. Stehl'ik and R. Skrekovski, Strong parity vertex coloring of plane graphs, IMFM, Preprint series 49 (2011), 1144.
[14] O. Ore, The Four-color Problem, (Academic Press, New York, 1967)
[15] J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997) 427-439, doi: 10.1007/BF01215922.
[16] D.P. Sanders and Y. Zhao, A new bound on the cyclic chromatic number, J. Combin. Theory (B) 83 (2001) 102-111.