Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_3_a1, author = {Bu, Yuehua and Lih, Ko-Wei and Wang, Weifan}, title = {Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {429--439}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a1/} }
TY - JOUR AU - Bu, Yuehua AU - Lih, Ko-Wei AU - Wang, Weifan TI - Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 429 EP - 439 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a1/ LA - en ID - DMGT_2011_31_3_a1 ER -
%0 Journal Article %A Bu, Yuehua %A Lih, Ko-Wei %A Wang, Weifan %T Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six %J Discussiones Mathematicae. Graph Theory %D 2011 %P 429-439 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a1/ %G en %F DMGT_2011_31_3_a1
Bu, Yuehua; Lih, Ko-Wei; Wang, Weifan. Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 429-439. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a1/
[1] M. Aigner, E. Triesch and Z. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, in: Proceedings of Combinatorics '90, A. Barlotti et al., eds. (North-Holland, Amsterdam, 1992) 1-9.
[2] S. Akbari, H. Bidkhori and N. Nosrati, r-Strong edge colorings of graphs, Discrete Math. 306 (2006) 3005-3010, doi: 10.1016/j.disc.2004.12.027.
[3] P.N. Balister, E. Gyori, J. Lehel and R. H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250, doi: 10.1137/S0895480102414107.
[4] P.N. Balister, O.M. Riordan and R.H. Schelp, Vertex-distinguishing edge colorings of graphs, J. Graph Theory 42 (2003) 95-109, doi: 10.1002/jgt.10076.
[5] J.-L. Baril, H. Kheddouci and O. Togni, Adjacent vertex distinguishing edge-colorings of meshes, Australas. J. Combin. 35 (2006) 89-102.
[6] J.-L. Baril and O. Togni, Neighbor-distinguishing k-tuple edge-colorings of graphs, Discrete Math. 309 (2009) 5147-5157, doi: 10.1016/j.disc.2009.04.003.
[7] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (1997) 70-82, doi: 10.1002/(SICI)1097-0118(199710)26:273::AID-JGT2>3.0.CO;2-C
[8] K. Edwards, M. Hornák and M. Woźniak, On the neighbour-distinguishing index of a graph, Graphs Combin. 22 (2006) 341-350, doi: 10.1007/s00373-006-0671-2.
[9] O. Favaron, H. Li and R.H. Schelp, Strong edge colorings of graphs, Discrete Math. 159 (1996) 103-109, doi: 10.1016/0012-365X(95)00102-3.
[10] H. Hatami, Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory (B) 95 (2005) 246-256, doi: 10.1016/j.jctb.2005.04.002.
[11] V.G. Vizing, On an estimate of the chromatic index of a p-graph, Diskret Analiz. 3 (1964) 25-30.
[12] Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626, doi: 10.1016/S0893-9659(02)80015-5.