Graphs with rainbow connection number two
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 313-320.

Voir la notice de l'article provenant de la source Library of Science

An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. In this paper we prove that rc(G) = 2 for every connected graph G of order n and size m, where n-12 + 1 ≤ m ≤ n2 - 1. We also characterize graphs with rainbow connection number two and large clique number.
Keywords: edge colouring, rainbow colouring, rainbow connection
@article{DMGT_2011_31_2_a7,
     author = {Kemnitz, Arnfried and Schiermeyer, Ingo},
     title = {Graphs with rainbow connection number two},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {313--320},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a7/}
}
TY  - JOUR
AU  - Kemnitz, Arnfried
AU  - Schiermeyer, Ingo
TI  - Graphs with rainbow connection number two
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 313
EP  - 320
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a7/
LA  - en
ID  - DMGT_2011_31_2_a7
ER  - 
%0 Journal Article
%A Kemnitz, Arnfried
%A Schiermeyer, Ingo
%T Graphs with rainbow connection number two
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 313-320
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a7/
%G en
%F DMGT_2011_31_2_a7
Kemnitz, Arnfried; Schiermeyer, Ingo. Graphs with rainbow connection number two. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 313-320. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a7/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008), doi: 10.1007/978-1-84628-970-5.

[2] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, Proceedings STACS 2009, to appear in Journal of Combinatorial Optimization.

[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster On rainbow connection, Electronic J. Combin. 15 (2008) #57.

[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008) 85-98.

[5] A.B. Ericksen, A matter of security, Graduating Engineer Computer Careers (2007) 24-28.

[6] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191.

[7] V.B. Le and Z. Tuza, Finding optimal rainbow connection is hard, preprint 2009.

[8] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA 2009, LNCS 5874 (2009) 432-437.