Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_2_a7, author = {Kemnitz, Arnfried and Schiermeyer, Ingo}, title = {Graphs with rainbow connection number two}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {313--320}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a7/} }
Kemnitz, Arnfried; Schiermeyer, Ingo. Graphs with rainbow connection number two. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 313-320. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a7/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008), doi: 10.1007/978-1-84628-970-5.
[2] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, Proceedings STACS 2009, to appear in Journal of Combinatorial Optimization.
[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster On rainbow connection, Electronic J. Combin. 15 (2008) #57.
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008) 85-98.
[5] A.B. Ericksen, A matter of security, Graduating Engineer Computer Careers (2007) 24-28.
[6] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191.
[7] V.B. Le and Z. Tuza, Finding optimal rainbow connection is hard, preprint 2009.
[8] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA 2009, LNCS 5874 (2009) 432-437.