On Fulkerson conjecture
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 253-272

Voir la notice de l'article provenant de la source Library of Science

If G is a bridgeless cubic graph, Fulkerson conjectured that we can find 6 perfect matchings (a Fulkerson covering) with the property that every edge of G is contained in exactly two of them. A consequence of the Fulkerson conjecture would be that every bridgeless cubic graph has 3 perfect matchings with empty intersection (this problem is known as the Fan Raspaud Conjecture). A FR-triple is a set of 3 such perfect matchings. We show here how to derive a Fulkerson covering from two FR-triples. Moreover, we give a simple proof that the Fulkerson conjecture holds true for some classes of well known snarks.
Keywords: cubic graph, perfect matchings
@article{DMGT_2011_31_2_a3,
     author = {Fouquet, Jean-Luc and Vanherpe, Jean-Marie},
     title = {On {Fulkerson} conjecture},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {253--272},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a3/}
}
TY  - JOUR
AU  - Fouquet, Jean-Luc
AU  - Vanherpe, Jean-Marie
TI  - On Fulkerson conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 253
EP  - 272
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a3/
LA  - en
ID  - DMGT_2011_31_2_a3
ER  - 
%0 Journal Article
%A Fouquet, Jean-Luc
%A Vanherpe, Jean-Marie
%T On Fulkerson conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 253-272
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a3/
%G en
%F DMGT_2011_31_2_a3
Fouquet, Jean-Luc; Vanherpe, Jean-Marie. On Fulkerson conjecture. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 253-272. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a3/