On Fulkerson conjecture
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 253-272.

Voir la notice de l'article provenant de la source Library of Science

If G is a bridgeless cubic graph, Fulkerson conjectured that we can find 6 perfect matchings (a Fulkerson covering) with the property that every edge of G is contained in exactly two of them. A consequence of the Fulkerson conjecture would be that every bridgeless cubic graph has 3 perfect matchings with empty intersection (this problem is known as the Fan Raspaud Conjecture). A FR-triple is a set of 3 such perfect matchings. We show here how to derive a Fulkerson covering from two FR-triples. Moreover, we give a simple proof that the Fulkerson conjecture holds true for some classes of well known snarks.
Keywords: cubic graph, perfect matchings
@article{DMGT_2011_31_2_a3,
     author = {Fouquet, Jean-Luc and Vanherpe, Jean-Marie},
     title = {On {Fulkerson} conjecture},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {253--272},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a3/}
}
TY  - JOUR
AU  - Fouquet, Jean-Luc
AU  - Vanherpe, Jean-Marie
TI  - On Fulkerson conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 253
EP  - 272
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a3/
LA  - en
ID  - DMGT_2011_31_2_a3
ER  - 
%0 Journal Article
%A Fouquet, Jean-Luc
%A Vanherpe, Jean-Marie
%T On Fulkerson conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 253-272
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a3/
%G en
%F DMGT_2011_31_2_a3
Fouquet, Jean-Luc; Vanherpe, Jean-Marie. On Fulkerson conjecture. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 253-272. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a3/

[1] V. Chvátal, Flip-Flops on hypohamiltonian graphs, Canad. Math. Bull. 16 (1973) 33-41, doi: 10.4153/CMB-1973-008-9.

[2] G. Fan and A. Raspaud, Fulkerson's Conjecture and Circuit Covers, J. Combin. Theory (B) 61 (1994) 133-138, doi: 10.1006/jctb.1994.1039.

[3] J.L. Fouquet and J.M. Vanherpe, On parsimonious edge-colouring of graphs with maximum degree three, Tech. report, LIFO, 2009.

[4] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971) 168-194, doi: 10.1007/BF01584085.

[5] M.K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. Combin. Theory (B) 31 (1981) 282-291, doi: 10.1016/0095-8956(81)90030-7.

[6] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Am. Math. Monthly 82 (1975) 221-239, doi: 10.2307/2319844.

[7] R. Rizzi, Indecomposable r-graphs and some other counterexamples, J. Graph Theory 32 (1999) 1-15, doi: 10.1002/(SICI)1097-0118(199909)32:11::AID-JGT1>3.0.CO;2-B

[8] Z. Skupień Exponentially many hypohamiltonian graphs, Graphs, Hypergraphs and Matroids III (M. Borowiecki and Z. Skupień, eds.) Proc. Conf. Kalsk, 1988, Higher College of Enginering, Zielona Góra, 1989, pp. 123-132.

[9] J.J. Watkins, Snarks, Graph Theory and Its Applications: East and West (Jinan, 1986), Ann. New York Acad. Sci. vol. 576, New York Acad. Sci. (New York, 1989) pp. 606-622.

[10] R. Hao, J. Niu, X. Wang, C.-Q. Zhang and T. Zhang, A note on Berge-Fulkerson coloring, Discrete Math. 309 (2009) 4235-4240, doi: 10.1016/j.disc.2008.12.024.