Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_2_a13, author = {Schiermeyer, Ingo}, title = {Bounds for the rainbow connection number of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {387--395}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a13/} }
Schiermeyer, Ingo. Bounds for the rainbow connection number of graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 387-395. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a13/
[1] J.C. Bermond, On Hamiltonian Walks, Proc. of the Fifth British Combinatorial Conference, Aberdeen, 1975, Utlitas Math. XV (1976) 41-51.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008), doi: 10.1007/978-1-84628-970-5.
[3] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, Proceedings STACS 2009, to appear in J. Combin. Optim.
[4] Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster, On rainbow connection, Electronic J. Combin. 15 (2008) #57.
[5] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008) 85-98.
[6] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
[7] A.B. Ericksen, A matter of security, Graduating Engineer Computer Careers (2007) 24-28.
[8] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313-320, doi: 10.7151/dmgt.1547.
[9] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191.
[10] V.B. Le and Z. Tuza, Finding optimal rainbow connection is hard, preprint 2009.
[11] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, International Workshop on Combinatorial Algorithms, IWOCA 2009, LNCS5874 (2009) 432-437.