Bounds for the rainbow connection number of graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 387-395.

Voir la notice de l'article provenant de la source Library of Science

An edge-coloured graph G is rainbow-connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow-connected. In this paper we show some new bounds for the rainbow connection number of graphs depending on the minimum degree and other graph parameters. Moreover, we discuss sharpness of some of these bounds.
Keywords: rainbow colouring, rainbow connectivity, extremal problem
@article{DMGT_2011_31_2_a13,
     author = {Schiermeyer, Ingo},
     title = {Bounds for the rainbow connection number of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {387--395},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a13/}
}
TY  - JOUR
AU  - Schiermeyer, Ingo
TI  - Bounds for the rainbow connection number of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 387
EP  - 395
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a13/
LA  - en
ID  - DMGT_2011_31_2_a13
ER  - 
%0 Journal Article
%A Schiermeyer, Ingo
%T Bounds for the rainbow connection number of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 387-395
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a13/
%G en
%F DMGT_2011_31_2_a13
Schiermeyer, Ingo. Bounds for the rainbow connection number of graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 387-395. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a13/

[1] J.C. Bermond, On Hamiltonian Walks, Proc. of the Fifth British Combinatorial Conference, Aberdeen, 1975, Utlitas Math. XV (1976) 41-51.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008), doi: 10.1007/978-1-84628-970-5.

[3] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, Proceedings STACS 2009, to appear in J. Combin. Optim.

[4] Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster, On rainbow connection, Electronic J. Combin. 15 (2008) #57.

[5] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008) 85-98.

[6] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.

[7] A.B. Ericksen, A matter of security, Graduating Engineer Computer Careers (2007) 24-28.

[8] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313-320, doi: 10.7151/dmgt.1547.

[9] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191.

[10] V.B. Le and Z. Tuza, Finding optimal rainbow connection is hard, preprint 2009.

[11] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, International Workshop on Combinatorial Algorithms, IWOCA 2009, LNCS5874 (2009) 432-437.