Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_2_a0, author = {Borowiecki, Mieczys{\l}aw and Kemnitz, Arnfried and Marangio, Massimiliano and Mih\'ok, Peter}, title = {Generalized total colorings of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {209--222}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a0/} }
TY - JOUR AU - Borowiecki, Mieczysław AU - Kemnitz, Arnfried AU - Marangio, Massimiliano AU - Mihók, Peter TI - Generalized total colorings of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 209 EP - 222 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a0/ LA - en ID - DMGT_2011_31_2_a0 ER -
%0 Journal Article %A Borowiecki, Mieczysław %A Kemnitz, Arnfried %A Marangio, Massimiliano %A Mihók, Peter %T Generalized total colorings of graphs %J Discussiones Mathematicae. Graph Theory %D 2011 %P 209-222 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a0/ %G en %F DMGT_2011_31_2_a0
Borowiecki, Mieczysław; Kemnitz, Arnfried; Marangio, Massimiliano; Mihók, Peter. Generalized total colorings of graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 209-222. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a0/
[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli (ed.): Advances in Graph Theory, (Vishwa International Publication, Gulbarga, 1991) pp. 42-69.
[3] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259-270, doi: 10.7151/dmgt.1174.
[4] R.L. Brooks, On coloring the nodes of a network, Math. Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X.
[5] S.A. Burr, An inequality involving the vertex arboricity and edge arboricity of a graph, J. Graph Theory 10 (1986) 403-404, doi: 10.1002/jgt.3190100315.
[6] R. Cowen, S.H. Hechler and P. Mihók, Graph coloring compactness theorems equivalent to BPI, Scientia Math. Japonicae 56 (2002) 171-180.
[7] G. Chartrand and H.V. Kronk, The point arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612-616, doi: 10.1112/jlms/s1-44.1.612.
[8] N.G. de Bruijn and P. Erdös, A colour problem for infinite graphs and a problem in the theory of relations, Indag. Math. 13 (1951) 371-373.
[9] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349-359, doi: 10.7151/dmgt.1180.
[10] A. Kemnitz and M. Marangio, [r,s,t] -colorings of graphs, Discrete Math. 307 (2007) 199-207, doi: 10.1016/j.disc.2006.06.030.
[11] A. Kemnitz, M. Marangio and P. Mihók, [r,s,t] -chromatic numbers and hereditary properties of graphs, Discrete Math. 307 (2007) 916-922, doi: 10.1016/j.disc.2005.11.055.
[12] P. Mihók and G. Semanišin, Unique factorization theorem and formal concept analysis, in: S. Ben Yahia et al. (eds.): Concept Lattices and Their Applications. Fourth International Conference, CLA 2006, Tunis, Tunisia, October 30-November 1, 2006. LNAI 4923. (Springer, Berlin, 2008) pp. 231-238.
[13] C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc. 39 (1964) 12, doi: 10.1112/jlms/s1-39.1.12.
[14] V.G. Vizing, On an estimate of the chromatic class of a p-graph (in Russian), Metody Diskret. Analiz. 3 (1964) 25-30.