Radio numbers for generalized prism graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 45-62.

Voir la notice de l'article provenant de la source Library of Science

A radio labeling is an assignment c:V(G) → N such that every distinct pair of vertices u,v satisfies the inequality d(u,v) + |c(u)-c(v)| ≥ diam(G) + 1. The span of a radio labeling is the maximum value. The radio number of G, rn(G), is the minimum span over all radio labelings of G. Generalized prism graphs, denoted Z_n,s, s ≥ 1, n ≥ s, have vertex set (i,j) | i = 1,2 and j = 1,...,n and edge set ((i,j),(i,j ±1)) ∪ ((1,i),(2,i+σ)) | σ = -⌊(s-1)/2⌋...,0,...,⌊s/2⌋. In this paper we determine the radio number of Z_n,s for s = 1,2 and 3. In the process we develop techniques that are likely to be of use in determining radio numbers of other families of graphs.
Keywords: radio number, radio labeling, prism graphs
@article{DMGT_2011_31_1_a3,
     author = {Martinez, Paul and Ortiz, Juan and Tomova, Maggy and Wyels, Cindy},
     title = {Radio numbers for generalized prism graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {45--62},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a3/}
}
TY  - JOUR
AU  - Martinez, Paul
AU  - Ortiz, Juan
AU  - Tomova, Maggy
AU  - Wyels, Cindy
TI  - Radio numbers for generalized prism graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 45
EP  - 62
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a3/
LA  - en
ID  - DMGT_2011_31_1_a3
ER  - 
%0 Journal Article
%A Martinez, Paul
%A Ortiz, Juan
%A Tomova, Maggy
%A Wyels, Cindy
%T Radio numbers for generalized prism graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 45-62
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a3/
%G en
%F DMGT_2011_31_1_a3
Martinez, Paul; Ortiz, Juan; Tomova, Maggy; Wyels, Cindy. Radio numbers for generalized prism graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 45-62. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a3/

[1] G. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309-316, doi: 10.1137/S0895480193245339.

[2] G. Chartrand, D. Erwin, P. Zhang and F. Harary, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77-85.

[3] G. Chartrand and P. Zhang, Radio colorings of graphs-a survey, Int. J. Comput. Appl. Math. 2 (2007) 237-252.

[4] W.K. Hale, Frequency assignment: theory and application, Proc. IEEE 68 (1980) 1497-1514, doi: 10.1109/PROC.1980.11899.

[5] R. Khennoufa and O. Togni, The Radio Antipodal and Radio Numbers of the Hypercube, Ars Combin., in press.

[6] X. Li, V. Mak and S. Zhou, Optimal radio labellings of complete m-ary trees, Discrete Appl. Math. 158 (2010) 507-515, doi: 10.1016/j.dam.2009.11.014.

[7] D.D.-F. Liu, Radio number for trees, Discrete Math. 308 (2008) 1153-1164, doi: 10.1016/j.disc.2007.03.066.

[8] D.D.-F. Liu and M. Xie, Radio numbers of squares of cycles, Congr. Numer. 169 (2004) 101-125.

[9] D.D.-F. Liu and M. Xie, Radio number for square paths, Ars Combin. 90 (2009) 307-319.

[10] D.D.-F. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (2009) 610-621 (electronic), doi: 10.1137/S0895480102417768.

[11] P. Zhang, Radio labelings of cycles, Ars Combin. 65 (2002) 21-32.