Notes on the independence number in the Cartesian product of graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 25-35.

Voir la notice de l'article provenant de la source Library of Science

Every connected graph G with radius r(G) and independence number α(G) obeys α(G) ≥ r(G). Recently the graphs for which equality holds have been classified. Here we investigate the members of this class that are Cartesian products. We show that for non-trivial graphs G and H, α(G ☐ H) = r(G ☐ H) if and only if one factor is a complete graph on two vertices, and the other is a nontrivial complete graph. We also prove a new (polynomial computable) lower bound α(G ☐ H) ≥ 2r(G)r(H) for the independence number and we classify graphs for which equality holds.
Keywords: independence number, Cartesian product, critical independent set, radius, r-ciliate
@article{DMGT_2011_31_1_a1,
     author = {Abay-Asmerom, G. and Hammack, R. and Larson, C. and Taylor, D.},
     title = {Notes on the independence number in the {Cartesian} product of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {25--35},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a1/}
}
TY  - JOUR
AU  - Abay-Asmerom, G.
AU  - Hammack, R.
AU  - Larson, C.
AU  - Taylor, D.
TI  - Notes on the independence number in the Cartesian product of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 25
EP  - 35
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a1/
LA  - en
ID  - DMGT_2011_31_1_a1
ER  - 
%0 Journal Article
%A Abay-Asmerom, G.
%A Hammack, R.
%A Larson, C.
%A Taylor, D.
%T Notes on the independence number in the Cartesian product of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 25-35
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a1/
%G en
%F DMGT_2011_31_1_a1
Abay-Asmerom, G.; Hammack, R.; Larson, C.; Taylor, D. Notes on the independence number in the Cartesian product of graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 25-35. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a1/

[1] B. Bresar and B. Zmazek, On the Independence Graph of a Graph, Discrete Math. 272 (2003) 263-268, doi: 10.1016/S0012-365X(03)00194-8.

[2] S. Butenko and S. Trukhanov, Using Critical Sets to Solve the Maximum Independent Set Problem, Operations Research Letters 35 (2007) 519-524.

[3] E. DeLaVina, C.E. Larson, R. Pepper and B. Waller, A Characterization of Graphs Where the Independence Number Equals the Radius, submitted, 2009.

[4] P. Erdös, M. Saks and V. Sós, Maximum Induced Trees in Graphs, J. Combin. Theory (B) 41 (1986) 61-69, doi: 10.1016/0095-8956(86)90028-6.

[5] S. Fajtlowicz, A Characterization of Radius-Critical Graphs, J. Graph Theory 12 (1988) 529-532, doi: 10.1002/jgt.3190120409.

[6] S. Fajtlowicz, Written on the Wall: Conjectures of Graffiti, available on the WWW at: http://www.math.uh.edu/clarson/graffiti.html.

[7] M. Garey and D. Johnson, Computers and Intractability (W.H. Freeman and Company, New York, 1979).

[8] J. Hagauer and S. Klavžar, On Independence Numbers of the Cartesian Product of Graphs, Ars. Combin. 43 (1996) 149-157.

[9] P. Hell, X. Yu and H. Zhou, Independence Ratios of Graph Powers, Discrete Math. 127 (1994) 213-220, doi: 10.1016/0012-365X(92)00480-F.

[10] W. Imrich and S. Klavžar, Product Graphs (Wiley-Interscience, New York, 2000).

[11] W. Imrich, S. Klavžar and D. Rall, Topics in Graph Theory: Graphs and their Cartesian Product, A K Peters (Wellesley, MA, 2008).

[12] P.K. Jha and G. Slutzki, Independence Numbers of Product Graphs, Appl. Math. Lett. 7 (1994) 91-94, doi: 10.1016/0893-9659(94)90018-3.

[13] S. Klavžar, Some New Bounds and Exact Results on the Independence Number of Cartesian Product Graphs, Ars Combin. 74 (2005) 173-186.

[14] C.E. Larson, A Note on Critical Independent Sets, Bulletin of the Institute of Combinatorics and its Applications 51 (2007) 34-46.

[15] C.E. Larson, Graph Theoretic Independence and Critical Independent Sets, Ph.D. Dissertation (University of Houston, 2008).

[16] C.E. Larson, The Critical Independence Number and an Independence Decomposition, submitted, 2009 (available at www.arxiv.org: arXiv:0912.2260v1).

[17] L. Lovász and M.D. Plummer, Matching Theory (North Holland, Amsterdam, 1986).

[18] M.P. Scott, J.S. Powell and D.F. Rall, On the Independence Number of the Cartesian Product of Caterpillars, Ars Combin. 60 (2001) 73-84.

[19] C.-Q. Zhang, Finding Critical Independent Sets and Critical Vertex Subsets are Polynomial Problems, SIAM J. Discrete Math. 3 (1990) 431-438, doi: 10.1137/0403037.