Notes on the independence number in the Cartesian product of graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 25-35
Voir la notice de l'article provenant de la source Library of Science
Every connected graph G with radius r(G) and independence number α(G) obeys α(G) ≥ r(G). Recently the graphs for which equality holds have been classified. Here we investigate the members of this class that are Cartesian products. We show that for non-trivial graphs G and H, α(G ☐ H) = r(G ☐ H) if and only if one factor is a complete graph on two vertices, and the other is a nontrivial complete graph. We also prove a new (polynomial computable) lower bound α(G ☐ H) ≥ 2r(G)r(H) for the independence number and we classify graphs for which equality holds.
Keywords:
independence number, Cartesian product, critical independent set, radius, r-ciliate
@article{DMGT_2011_31_1_a1,
author = {Abay-Asmerom, G. and Hammack, R. and Larson, C. and Taylor, D.},
title = {Notes on the independence number in the {Cartesian} product of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {25--35},
publisher = {mathdoc},
volume = {31},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a1/}
}
TY - JOUR AU - Abay-Asmerom, G. AU - Hammack, R. AU - Larson, C. AU - Taylor, D. TI - Notes on the independence number in the Cartesian product of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 25 EP - 35 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a1/ LA - en ID - DMGT_2011_31_1_a1 ER -
%0 Journal Article %A Abay-Asmerom, G. %A Hammack, R. %A Larson, C. %A Taylor, D. %T Notes on the independence number in the Cartesian product of graphs %J Discussiones Mathematicae. Graph Theory %D 2011 %P 25-35 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a1/ %G en %F DMGT_2011_31_1_a1
Abay-Asmerom, G.; Hammack, R.; Larson, C.; Taylor, D. Notes on the independence number in the Cartesian product of graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 25-35. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a1/