Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2010_30_4_a9, author = {McKee, Terry}, title = {Clique graph representations of ptolemaic graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {651--661}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a9/} }
McKee, Terry. Clique graph representations of ptolemaic graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 651-661. http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a9/
[1] H.-J. Bandelt and E. Prisner, Clique graphs and Helly graphs, J. Combin. Theory (B) 51 (1991) 34-45, doi: 10.1016/0095-8956(91)90004-4.
[2] B.-L. Chen and K.-W. Lih, Diameters of iterated clique graphs of chordal graphs, J. Graph Theory 14 (1990) 391-396, doi: 10.1002/jgt.3190140311.
[3] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics (Philadelphia, 1999).
[4] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theory 5 (1981) 323-331, doi: 10.1002/jgt.3190050314.
[5] T.A. McKee, Maximal connected cographs in distance-hereditary graphs, Utilitas Math. 57 (2000) 73-80.
[6] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics (Philadelphia, 1999).
[7] F. Nicolai, A hypertree characterization of distance-hereditary graphs, Tech. Report Gerhard-Mercator-Universität Gesamthochschule (Duisburg SM-DU-255, 1994).
[8] E. Prisner, Graph Dynamics, Pitman Research Notes in Mathematics Series #338 (Longman, Harlow, 1995).
[9] J.L. Szwarcfiter, A survey on clique graphs, in: Recent advances in algorithms and combinatorics, pp. 109-136, CMS Books Math./Ouvrages Math. SMC 11 (Springer, New York, 2003).