Partitioning a graph into a dominating set, a total dominating set, and something else
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 563-574.

Voir la notice de l'article provenant de la source Library of Science

A recent result of Henning and Southey (A note on graphs with disjoint dominating and total dominating set, Ars Comb. 89 (2008), 159-162) implies that every connected graph of minimum degree at least three has a dominating set D and a total dominating set T which are disjoint. We show that the Petersen graph is the only such graph for which D∪T necessarily contains all vertices of the graph.
Keywords: domination, total domination, domatic number, vertex partition, Petersen graph
@article{DMGT_2010_30_4_a3,
     author = {Henning, Michael and L\"owenstein, Christian and Rautenbach, Dieter},
     title = {Partitioning a graph into a dominating set, a total dominating set, and something else},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {563--574},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a3/}
}
TY  - JOUR
AU  - Henning, Michael
AU  - Löwenstein, Christian
AU  - Rautenbach, Dieter
TI  - Partitioning a graph into a dominating set, a total dominating set, and something else
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 563
EP  - 574
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a3/
LA  - en
ID  - DMGT_2010_30_4_a3
ER  - 
%0 Journal Article
%A Henning, Michael
%A Löwenstein, Christian
%A Rautenbach, Dieter
%T Partitioning a graph into a dominating set, a total dominating set, and something else
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 563-574
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a3/
%G en
%F DMGT_2010_30_4_a3
Henning, Michael; Löwenstein, Christian; Rautenbach, Dieter. Partitioning a graph into a dominating set, a total dominating set, and something else. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 563-574. http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a3/

[1] N.J. Calkin and P. Dankelmann, The domatic number of regular graphs, Ars Combin. 73 (2004) 247-255.

[2] G.S. Domke, J.E. Dunbar and L.R. Markus, The inverse domination number of a graph, Ars Combin. 72 (2004) 149-160.

[3] U. Feige, M.M. Halldórsson, G. Kortsarz and A. Srinivasan, Approximating the domatic number, SIAM J. Comput. 32 (2002) 172-195, doi: 10.1137/S0097539700380754.

[4] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, 2001).

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in graphs: Advanced topics (Marcel Dekker, New York, 1998).

[7] S.M. Hedetniemi, S.T. Hedetniemi, R.C. Laskar, L. Markus and P.J. Slater, Disjoint dominating sets in graphs, in: Proc. Internat. Conf. Discrete Math., ICDM 2006, 87-100, Ramanujan Math. Soc., Lecture Notes Series in Mathematics, 2008.

[8] M.A. Henning, C. Löwenstein and D. Rautenbach, Remarks about disjoint dominating sets, Discrete Math. 309 (2009) 6451-6458, doi: 10.1016/j.disc.2009.06.017.

[9] M.A. Henning and J. Southey, A note on graphs with disjoint dominating and total dominating sets, Ars Combin. 89 (2008) 159-162.

[10] M.A. Henning and J. Southey, A characterization of graphs with disjoint dominating and total dominating sets, Quaestiones Mathematicae 32 (2009) 119-129, doi: 10.2989/QM.2009.32.1.10.712.

[11] V.R. Kulli and S.C. Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Lett. 14 (1991) 473-475.

[12] C. Löwenstein and D. Rautenbach, Pairs of disjoint dominating sets and the minimum degree of graphs, Graphs Combin. 26 (2010) 407-424, doi: 10.1007/s00373-010-0918-9.

[13] O. Ore, Theory of Graphs, Amer. Math. Soc. Transl. 38 (Amer. Math. Soc., Providence, RI, 1962) 206-212.

[14] B. Zelinka, Total domatic number and degrees of vertices of a graph, Math. Slovaca 39 (1989) 7-11.

[15] B. Zelinka, Domatic numbers of graphs and their variants: A survey, in: Domination in graphs: Advanced topics, T.W. Haynes et al. eds (Marcel Dekker, New York, 1998), 351-377.