Rainbow numbers for small stars with one edge added
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 555-562.

Voir la notice de l'article provenant de la source Library of Science

A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. For a graph H and a positive integer n, the anti-Ramsey number f(n,H) is the maximum number of colors in an edge-coloring of Kₙ with no rainbow copy of H. The rainbow number rb(n,H) is the minimum number of colors such that any edge-coloring of Kₙ with rb(n,H) number of colors contains a rainbow copy of H. Certainly rb(n,H) = f(n,H) + 1. Anti-Ramsey numbers were introduced by Erdös et al. [5] and studied in numerous papers.
Keywords: rainbow number, anti-Ramsey number
@article{DMGT_2010_30_4_a2,
     author = {Gorgol, Izolda and {\L}azuka, Ewa},
     title = {Rainbow numbers for small stars with one edge added},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {555--562},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a2/}
}
TY  - JOUR
AU  - Gorgol, Izolda
AU  - Łazuka, Ewa
TI  - Rainbow numbers for small stars with one edge added
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 555
EP  - 562
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a2/
LA  - en
ID  - DMGT_2010_30_4_a2
ER  - 
%0 Journal Article
%A Gorgol, Izolda
%A Łazuka, Ewa
%T Rainbow numbers for small stars with one edge added
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 555-562
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a2/
%G en
%F DMGT_2010_30_4_a2
Gorgol, Izolda; Łazuka, Ewa. Rainbow numbers for small stars with one edge added. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 555-562. http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a2/

[1] N. Alon, On the conjecture of Erdös, Simonovits and Sós concerning anti-Ramsey theorems, J. Graph Theory 7 (1983) 91-94, doi: 10.1002/jgt.3190070112.

[2] M. Axenovich and T. Jiang, Anti-Ramsey numbers for small complete bipartite graphs, Ars Combinatoria 73 (2004) 311-318.

[3] R. Diestel, Graph theory (Springer-Verlag, New York, 1997).

[4] P. Erdös and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51-57.

[5] P. Erdös, A. Simonovits and V. Sós, Anti-Ramsey theorems, in: Infinite and Finite Sets (A. Hajnal, R. Rado, and V. Sós, eds.), Colloq. Math. Soc. J. Bolyai (North-Holland, 1975) 633-643.

[6] I. Gorgol, On rainbow numbers for cycles with pendant edges, Graphs and Combinatorics 24 (2008) 327-331, doi: 10.1007/s00373-008-0786-8.

[7] T. Jiang, Anti-Ramsey numbers for subdivided graphs, J. Combin. Theory (B) 85 (2002) 361-366, doi: 10.1006/jctb.2001.2105.

[8] T. Jiang, Edge-colorings with no large polychromatic stars, Graphs and Combinatorics 18 (2002) 303-308, doi: 10.1007/s003730200022.

[9] T. Jiang and D.B. West, On the Erdös-Simonovits-Sós conjecture about the anti-Ramsey number of a cycle, Combin. Probab. Comput. 12 (2003) 585-598, doi: 10.1017/S096354830300590X.

[10] T. Jiang and D.B. West, Edge-colorings of complete graphs that avoid polychromatic trees, Discrete Math. 274 (2004) 137-145, doi: 10.1016/j.disc.2003.09.002.

[11] J.J. Montellano-Ballesteros, Totally multicolored diamonds, Electronic Notes in Discrete Math. 30 (2008) 231-236, doi: 10.1016/j.endm.2008.01.040.

[12] J.J. Montellano-Ballesteros and V. Neuman-Lara, An anti-Ramsey theorem on cycles, Graphs and Combinatorics 21 (2005) 343-354, doi: 10.1007/s00373-005-0619-y.

[13] I. Schiermeyer, Rainbow 5- and 6-cycles: a proof of the conjecture of Erdös, Simonovits and Sós, preprint (TU Bergakademie Freiberg, 2001).

[14] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286 (2004) 157-162, doi: 10.1016/j.disc.2003.11.057.

[15] M. Simonovits and V. Sós, On restricted colorings of Kₙ, Combinatorica 4 (1984) 101-110, doi: 10.1007/BF02579162.