n-ary transit functions in graphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 671-685

Voir la notice de l'article provenant de la source Library of Science

n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.
Keywords: n-arity, transit function, betweenness, Steiner convexity
@article{DMGT_2010_30_4_a11,
     author = {Changat, Manoj and Mathews, Joseph and Peterin, Iztok and Narasimha-Shenoi, Prasanth},
     title = {n-ary transit functions in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {671--685},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a11/}
}
TY  - JOUR
AU  - Changat, Manoj
AU  - Mathews, Joseph
AU  - Peterin, Iztok
AU  - Narasimha-Shenoi, Prasanth
TI  - n-ary transit functions in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 671
EP  - 685
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a11/
LA  - en
ID  - DMGT_2010_30_4_a11
ER  - 
%0 Journal Article
%A Changat, Manoj
%A Mathews, Joseph
%A Peterin, Iztok
%A Narasimha-Shenoi, Prasanth
%T n-ary transit functions in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 671-685
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a11/
%G en
%F DMGT_2010_30_4_a11
Changat, Manoj; Mathews, Joseph; Peterin, Iztok; Narasimha-Shenoi, Prasanth. n-ary transit functions in graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 671-685. http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a11/