The competition numbers of Johnson graphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 449-459

Voir la notice de l'article provenant de la source Library of Science

The competition graph of a digraph D is a graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is defined to be the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and to characterize all graphs with given competition number k has been one of the important research problems in the study of competition graphs.
Keywords: competition graph, competition number, edge clique cover, Johnson graph
@article{DMGT_2010_30_3_a7,
     author = {Kim, Suh-Ryung and Park, Boram and Sano, Yoshio},
     title = {The competition numbers of {Johnson} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {449--459},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a7/}
}
TY  - JOUR
AU  - Kim, Suh-Ryung
AU  - Park, Boram
AU  - Sano, Yoshio
TI  - The competition numbers of Johnson graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 449
EP  - 459
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a7/
LA  - en
ID  - DMGT_2010_30_3_a7
ER  - 
%0 Journal Article
%A Kim, Suh-Ryung
%A Park, Boram
%A Sano, Yoshio
%T The competition numbers of Johnson graphs
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 449-459
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a7/
%G en
%F DMGT_2010_30_3_a7
Kim, Suh-Ryung; Park, Boram; Sano, Yoshio. The competition numbers of Johnson graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 449-459. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a7/