Graphs for n-circular matroids
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 437-447.

Voir la notice de l'article provenant de la source Library of Science

We give "if and only if" characterization of graphs with the following property: given n ≥ 3, edges of such graphs form matroids with circuits from the collection of all graphs with n fundamental cycles. In this way we refer to the notion of matroidal family defined by Simões-Pereira [2].
Keywords: matroid, matroidal family
@article{DMGT_2010_30_3_a6,
     author = {Kawa, Renata},
     title = {Graphs for n-circular matroids},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {437--447},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a6/}
}
TY  - JOUR
AU  - Kawa, Renata
TI  - Graphs for n-circular matroids
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 437
EP  - 447
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a6/
LA  - en
ID  - DMGT_2010_30_3_a6
ER  - 
%0 Journal Article
%A Kawa, Renata
%T Graphs for n-circular matroids
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 437-447
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a6/
%G en
%F DMGT_2010_30_3_a6
Kawa, Renata. Graphs for n-circular matroids. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 437-447. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a6/

[1] H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935) 509-533, doi: 10.2307/2371182.

[2] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits II, Discrete Math. 12 (1975) 55-78, doi: 10.1016/0012-365X(75)90095-3.

[3] J.M.S. Simões-Pereira, Matroidal Families of Graphs, in: N. White (ed.) Matroid Applications (Cambridge University Press, 1992), doi: 10.1017/CBO9780511662041.005.

[4] J.G. Oxley, Matroid Theory (Oxford University Press, 1992).

[5] L.R. Matthews, Bicircular matroids, Quart. J. Math. Oxford 28 (1977) 213-228, doi: 10.1093/qmath/28.2.213.

[6] T. Andreae, Matroidal families of finite connected nonhomeomorphic graphs exist, J. Graph Theory 2 (1978) 149-153, doi: 10.1002/jgt.3190020208.

[7] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. 27 (1979) 93-97, doi: 10.1016/0012-365X(79)90072-4.

[8] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004).