Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2010_30_3_a6, author = {Kawa, Renata}, title = {Graphs for n-circular matroids}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {437--447}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a6/} }
Kawa, Renata. Graphs for n-circular matroids. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 437-447. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a6/
[1] H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935) 509-533, doi: 10.2307/2371182.
[2] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits II, Discrete Math. 12 (1975) 55-78, doi: 10.1016/0012-365X(75)90095-3.
[3] J.M.S. Simões-Pereira, Matroidal Families of Graphs, in: N. White (ed.) Matroid Applications (Cambridge University Press, 1992), doi: 10.1017/CBO9780511662041.005.
[4] J.G. Oxley, Matroid Theory (Oxford University Press, 1992).
[5] L.R. Matthews, Bicircular matroids, Quart. J. Math. Oxford 28 (1977) 213-228, doi: 10.1093/qmath/28.2.213.
[6] T. Andreae, Matroidal families of finite connected nonhomeomorphic graphs exist, J. Graph Theory 2 (1978) 149-153, doi: 10.1002/jgt.3190020208.
[7] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. 27 (1979) 93-97, doi: 10.1016/0012-365X(79)90072-4.
[8] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004).