Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2010_30_3_a5, author = {Lu, You and Hou, Xinmin and Xu, Jun-Ming and Li, Ning}, title = {A characterization of (\ensuremath{\gamma}ₜ,\ensuremath{\gamma}₂)-trees}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {425--435}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a5/} }
TY - JOUR AU - Lu, You AU - Hou, Xinmin AU - Xu, Jun-Ming AU - Li, Ning TI - A characterization of (γₜ,γ₂)-trees JO - Discussiones Mathematicae. Graph Theory PY - 2010 SP - 425 EP - 435 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a5/ LA - en ID - DMGT_2010_30_3_a5 ER -
Lu, You; Hou, Xinmin; Xu, Jun-Ming; Li, Ning. A characterization of (γₜ,γ₂)-trees. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 425-435. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a5/
[1] M. Blidia, M. Chellalia and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Math. 306 (2006) 1840-1845, doi: 10.1016/j.disc.2006.03.061.
[2] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037, doi: 10.1016/j.disc.2006.04.010.
[3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.
[4] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, A characterization of (γ,i)-trees, J. Graph Theory 34 (2000) 277-292, doi: 10.1002/1097-0118(200008)34:4277::AID-JGT4>3.0.CO;2-#
[5] G. Chartrant and L. Lesniak, Graphs Digraphs, third ed. (Chapman Hall, London, 1996).
[6] J.F. Fink and M.S. Jacobson, n-Domination in graphs, in: Y. Alavi, A.J. Schwenk (eds.), Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.
[7] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers, Congr. Numer. 55 (1986) 121-150.
[8] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and P.J. Slater, H-forming sets in graphs, Discrete Math. 262 (2003) 159-169, doi: 10.1016/S0012-365X(02)00496-X.
[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (New York, Marcel Deliker, 1998).
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (New York, Marcel Deliker, 1998).
[11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong quality of domination parameters in trees, Discrete Math. 260 (2003) 77-87, doi: 10.1016/S0012-365X(02)00451-X.
[12] M.A. Henning, A survey of selected recently results on total domination in graphs, Discrete Math. 309 (2009) 32-63, doi: 10.1016/j.disc.2007.12.044.
[13] X. Hou, A characterization of (2γ,γₚ)-trees, Discrete Math. 308 (2008) 3420-3426, doi: 10.1016/j.disc.2007.06.034.