A characterization of (γₜ,γ₂)-trees
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 425-435.

Voir la notice de l'article provenant de la source Library of Science

Let γₜ(G) and γ₂(G) be the total domination number and the 2-domination number of a graph G, respectively. It has been shown that: γₜ(T) ≤ γ₂(T) for any tree T. In this paper, we provide a constructive characterization of those trees with equal total domination number and 2-domination number.
Keywords: domination, total domination, 2-domination, (λ,μ)-tree
@article{DMGT_2010_30_3_a5,
     author = {Lu, You and Hou, Xinmin and Xu, Jun-Ming and Li, Ning},
     title = {A characterization of (\ensuremath{\gamma}ₜ,\ensuremath{\gamma}₂)-trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {425--435},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a5/}
}
TY  - JOUR
AU  - Lu, You
AU  - Hou, Xinmin
AU  - Xu, Jun-Ming
AU  - Li, Ning
TI  - A characterization of (γₜ,γ₂)-trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 425
EP  - 435
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a5/
LA  - en
ID  - DMGT_2010_30_3_a5
ER  - 
%0 Journal Article
%A Lu, You
%A Hou, Xinmin
%A Xu, Jun-Ming
%A Li, Ning
%T A characterization of (γₜ,γ₂)-trees
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 425-435
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a5/
%G en
%F DMGT_2010_30_3_a5
Lu, You; Hou, Xinmin; Xu, Jun-Ming; Li, Ning. A characterization of (γₜ,γ₂)-trees. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 425-435. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a5/

[1] M. Blidia, M. Chellalia and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Math. 306 (2006) 1840-1845, doi: 10.1016/j.disc.2006.03.061.

[2] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037, doi: 10.1016/j.disc.2006.04.010.

[3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.

[4] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, A characterization of (γ,i)-trees, J. Graph Theory 34 (2000) 277-292, doi: 10.1002/1097-0118(200008)34:4277::AID-JGT4>3.0.CO;2-#

[5] G. Chartrant and L. Lesniak, Graphs Digraphs, third ed. (Chapman Hall, London, 1996).

[6] J.F. Fink and M.S. Jacobson, n-Domination in graphs, in: Y. Alavi, A.J. Schwenk (eds.), Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.

[7] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers, Congr. Numer. 55 (1986) 121-150.

[8] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and P.J. Slater, H-forming sets in graphs, Discrete Math. 262 (2003) 159-169, doi: 10.1016/S0012-365X(02)00496-X.

[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (New York, Marcel Deliker, 1998).

[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (New York, Marcel Deliker, 1998).

[11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong quality of domination parameters in trees, Discrete Math. 260 (2003) 77-87, doi: 10.1016/S0012-365X(02)00451-X.

[12] M.A. Henning, A survey of selected recently results on total domination in graphs, Discrete Math. 309 (2009) 32-63, doi: 10.1016/j.disc.2007.12.044.

[13] X. Hou, A characterization of (2γ,γₚ)-trees, Discrete Math. 308 (2008) 3420-3426, doi: 10.1016/j.disc.2007.06.034.