Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2010_30_3_a3, author = {Bujt\'as, Csilla and Sampathkumar, E. and Tuza, Zsolt and Subramanya, M. and Dominic, Charles}, title = {3-consecutive c-colorings of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {393--405}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a3/} }
TY - JOUR AU - Bujtás, Csilla AU - Sampathkumar, E. AU - Tuza, Zsolt AU - Subramanya, M. AU - Dominic, Charles TI - 3-consecutive c-colorings of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2010 SP - 393 EP - 405 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a3/ LA - en ID - DMGT_2010_30_3_a3 ER -
%0 Journal Article %A Bujtás, Csilla %A Sampathkumar, E. %A Tuza, Zsolt %A Subramanya, M. %A Dominic, Charles %T 3-consecutive c-colorings of graphs %J Discussiones Mathematicae. Graph Theory %D 2010 %P 393-405 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a3/ %G en %F DMGT_2010_30_3_a3
Bujtás, Csilla; Sampathkumar, E.; Tuza, Zsolt; Subramanya, M.; Dominic, Charles. 3-consecutive c-colorings of graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 393-405. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a3/
[1] C. Berge, Hypergraphs (North-Holland, 1989).
[2] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, I: General results, Discrete Math. 309 (2009) 4890-4902, doi: 10.1016/j.disc.2008.04.019.
[3] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, II: Interval hypergraphs and hypertrees, Discrete Math. in print, doi:10.1016/j.disc.2008.10.023
[4] G.J. Chang, M. Farber and Zs. Tuza, Algorithmic aspects of neighborhood numbers, SIAM J. Discrete Math. 6 (1993) 24-29, doi: 10.1137/0406002.
[5] S. Hedetniemi and R. Laskar, Connected domination in graphs, in: Graph Theory and Combinatorics, B. Bollobás, Ed. (Academic Press, London, 1984) 209-218.
[6] J. Lehel and Zs. Tuza, Neighborhood perfect graphs, Discrete Math. 61 (1986) 93-101, doi: 10.1016/0012-365X(86)90031-2.
[7] E. Sampathkumar, DST Project Report, No.SR/S4/MS.275/05.
[8] E. Sampathkumar, M.S. Subramanya and C. Dominic, 3-Consecutive vertex coloring of a graph, Proc. Int. Conf. ICDM (University of Mysore, India, 2008) 147-151.
[9] E. Sampathkumar and P.S. Neralagi, The neighourhood number of a graph, Indian J. Pure Appl. Math. 16 (1985) 126-132.
[10] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607-613.
[11] F. Sterboul, A new combinatorial parameter, in: Infinite and Finite Sets (A. Hajnal et al., Eds.), Colloq. Math. Soc. J. Bolyai, 10, Keszthely 1973 (North-Holland/American Elsevier, 1975) Vol. III pp. 1387-1404.
[12] V. Voloshin, The mixed hypergraphs, Computer Sci. J. Moldova 1 (1993) 45-52.