3-consecutive c-colorings of graphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 393-405

Voir la notice de l'article provenant de la source Library of Science

A 3-consecutive C-coloring of a graph G = (V,E) is a mapping φ:V → ℕ such that every path on three vertices has at most two colors. We prove general estimates on the maximum number (χ̅)_3CC(G) of colors in a 3-consecutive C-coloring of G, and characterize the structure of connected graphs with (χ̅)_3CC(G) ≥ k for k = 3 and k = 4.
Keywords: graph coloring, vertex coloring, consecutive coloring, upper chromatic number
@article{DMGT_2010_30_3_a3,
     author = {Bujt\'as, Csilla and Sampathkumar, E. and Tuza, Zsolt and Subramanya, M. and Dominic, Charles},
     title = {3-consecutive c-colorings of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {393--405},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a3/}
}
TY  - JOUR
AU  - Bujtás, Csilla
AU  - Sampathkumar, E.
AU  - Tuza, Zsolt
AU  - Subramanya, M.
AU  - Dominic, Charles
TI  - 3-consecutive c-colorings of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 393
EP  - 405
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a3/
LA  - en
ID  - DMGT_2010_30_3_a3
ER  - 
%0 Journal Article
%A Bujtás, Csilla
%A Sampathkumar, E.
%A Tuza, Zsolt
%A Subramanya, M.
%A Dominic, Charles
%T 3-consecutive c-colorings of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 393-405
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a3/
%G en
%F DMGT_2010_30_3_a3
Bujtás, Csilla; Sampathkumar, E.; Tuza, Zsolt; Subramanya, M.; Dominic, Charles. 3-consecutive c-colorings of graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 393-405. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a3/