The Wiener number of powers of the Mycielskian
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 489-498

Voir la notice de l'article provenant de la source Library of Science

The Wiener number of a graph G is defined as 1/2 ∑_u,v ∈ V(G) d(u,v), d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, W(μ(Sₙ^k)) ≤ W(μ(Tₙ^k)) ≤ W(μ(Pₙ^k)), where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of μ(G^k).
Keywords: Wiener number, Mycielskian, powers of a graph
@article{DMGT_2010_30_3_a10,
     author = {Balakrishnan, Rangaswami and Raj, S.},
     title = {The {Wiener} number of powers of the {Mycielskian}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {489--498},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a10/}
}
TY  - JOUR
AU  - Balakrishnan, Rangaswami
AU  - Raj, S.
TI  - The Wiener number of powers of the Mycielskian
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 489
EP  - 498
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a10/
LA  - en
ID  - DMGT_2010_30_3_a10
ER  - 
%0 Journal Article
%A Balakrishnan, Rangaswami
%A Raj, S.
%T The Wiener number of powers of the Mycielskian
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 489-498
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a10/
%G en
%F DMGT_2010_30_3_a10
Balakrishnan, Rangaswami; Raj, S. The Wiener number of powers of the Mycielskian. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 489-498. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a10/