k-independence stable graphs upon edge removal
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 265-274.

Voir la notice de l'article provenant de la source Library of Science

Let k be a positive integer and G = (V(G),E(G)) a graph. A subset S of V(G) is a k-independent set of G if the subgraph induced by the vertices of S has maximum degree at most k-1. The maximum cardinality of a k-independent set of G is the k-independence number βₖ(G). A graph G is called β¯ₖ-stable if βₖ(G-e) = βₖ(G) for every edge e of E(G). First we give a necessary and sufficient condition for β¯ₖ-stable graphs. Then we establish four equivalent conditions for β¯ₖ-stable trees.
Keywords: k-independence stable graphs, k-independence
@article{DMGT_2010_30_2_a7,
     author = {Chellali, Mustapha and Haynes, Teresa and Volkmann, Lutz},
     title = {k-independence stable graphs upon edge removal},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {265--274},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a7/}
}
TY  - JOUR
AU  - Chellali, Mustapha
AU  - Haynes, Teresa
AU  - Volkmann, Lutz
TI  - k-independence stable graphs upon edge removal
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 265
EP  - 274
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a7/
LA  - en
ID  - DMGT_2010_30_2_a7
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%A Haynes, Teresa
%A Volkmann, Lutz
%T k-independence stable graphs upon edge removal
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 265-274
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a7/
%G en
%F DMGT_2010_30_2_a7
Chellali, Mustapha; Haynes, Teresa; Volkmann, Lutz. k-independence stable graphs upon edge removal. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 265-274. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a7/

[1] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037, doi: 10.1016/j.disc.2006.04.010.

[2] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer (John Wiley and sons, New York, 1985) 283-300.

[3] G. Gunther, B. Hartnell and D.F. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Appl. Math. 46 (1993) 167-172, doi: 10.1016/0166-218X(93)90026-K.