Graph centers used for stabilization of matrix factorizations
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 249-259.

Voir la notice de l'article provenant de la source Library of Science

Systems of consistent linear equations with symmetric positive semidefinite matrices arise naturally while solving many scientific and engineering problems. In case of a "floating" static structure, the boundary conditions are not sufficient to prevent its rigid body motions.
Keywords: FETI, parallel computing, generalised inverse, graph center
@article{DMGT_2010_30_2_a5,
     author = {Kabel{\'\i}kov\'a, Pavla},
     title = {Graph centers used for stabilization of matrix factorizations},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {249--259},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a5/}
}
TY  - JOUR
AU  - Kabelíková, Pavla
TI  - Graph centers used for stabilization of matrix factorizations
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 249
EP  - 259
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a5/
LA  - en
ID  - DMGT_2010_30_2_a5
ER  - 
%0 Journal Article
%A Kabelíková, Pavla
%T Graph centers used for stabilization of matrix factorizations
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 249-259
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a5/
%G en
%F DMGT_2010_30_2_a5
Kabelíková, Pavla. Graph centers used for stabilization of matrix factorizations. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a5/

[1] O. Axelsson, Iterative Solution Methods (Cambridge University Press: Cambridge, 1994).

[2] T. Brzobohatý, Z. Dostál, T. Kozubek and A. Markopoulos, Combining Cholesky decomposition with SVD to stable evaluation of a generalised inverse of the stiffness matrix of a floating structure, submited, 2009.

[3] Z. Dostál, D. Horák, R. Kucera, V. Vondrák, J. Haslinger, J. Dobiás and S. Pták, FETI based algorithms for contact problems: scalability, large displacements and 3D Coulomb friction, Computer Methods in Applied Mechanics and Engineering 194 (2005) 395-409, doi: 10.1016/j.cma.2004.05.015.

[4] Z. Dostál, D. Horák and R. Kucera, Total FETI - an easier implementable variant of the FETI method for numerical solution of elliptic PDE, Communications in Numerical Methods in Engineering 22 (2006) 1155-1162, doi: 10.1002/cnm.881.

[5] C. Farhat and M. Géradin, On the general solution by a direct method of a large scale singular system of linear equations: application to the analysis of floating structures, Int. J. Numer. Meth. Engng 41 (1998) 675-696, doi: 10.1002/(SICI)1097-0207(19980228)41:4675::AID-NME305>3.0.CO;2-8

[6] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Meth. Engng 32 (1991) 1205-1227, doi: 10.1002/nme.1620320604.

[7] Ch. Godsil and G. Royle, Algebraic Graph Theory (Springer-Verlag, New York, ISBN 0-387-95241-1, 2001).

[8] G.H. Golub and C.F. Van Loan, Matrix Computations (2nd ed.) (John Hopkins University Press, Baltimore, 1989).

[9] P. Kabelíková, T. Kozubek, A. Markopoulos and T. Brzobohatý, Effective Algorithms for Implementation of FETI-Based Domain Decomposition Methods, submited, 2009.

[10] G. Karypis and V. Kumar, METIS manual Version 4.0, [online] http://glaros.dtc.umn.edu/gkhome/views/metis, University of Minnesota, 1998.

[11] C.T. Pan, On the existence and factorization of rank-revealing LU factorizations, Linear Algebra and Its Applications 316 (2000) 199-222, doi: 10.1016/S0024-3795(00)00120-8.

[12] M. Papadrakakis and Y. Fragakis, An integrated geometric-algebraic method for solving semi-definite problems in structural mechanics, Computer Methods in Applied Mechanics and Engineering 190 (2001) 6513-6532, doi: 10.1016/S0045-7825(01)00234-1.

[13] K.C. Park and C.A. Felipa, The construction of free-free flexibility matrices for multilevel structural analysis, Int. J. Numer. Meth. Engng 47 (2000) 395-418, doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3395::AID-NME777>3.3.CO;2-0

[14] K.C. Park, C.A. Felipa and U.A. Gumaste, A localized version of the method of Lagrange multipliers, Computational Mechanics 24 (2000) 476-490, doi: 10.1007/s004660050007.