Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2010_30_2_a5, author = {Kabel{\'\i}kov\'a, Pavla}, title = {Graph centers used for stabilization of matrix factorizations}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {249--259}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a5/} }
Kabelíková, Pavla. Graph centers used for stabilization of matrix factorizations. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a5/
[1] O. Axelsson, Iterative Solution Methods (Cambridge University Press: Cambridge, 1994).
[2] T. Brzobohatý, Z. Dostál, T. Kozubek and A. Markopoulos, Combining Cholesky decomposition with SVD to stable evaluation of a generalised inverse of the stiffness matrix of a floating structure, submited, 2009.
[3] Z. Dostál, D. Horák, R. Kucera, V. Vondrák, J. Haslinger, J. Dobiás and S. Pták, FETI based algorithms for contact problems: scalability, large displacements and 3D Coulomb friction, Computer Methods in Applied Mechanics and Engineering 194 (2005) 395-409, doi: 10.1016/j.cma.2004.05.015.
[4] Z. Dostál, D. Horák and R. Kucera, Total FETI - an easier implementable variant of the FETI method for numerical solution of elliptic PDE, Communications in Numerical Methods in Engineering 22 (2006) 1155-1162, doi: 10.1002/cnm.881.
[5] C. Farhat and M. Géradin, On the general solution by a direct method of a large scale singular system of linear equations: application to the analysis of floating structures, Int. J. Numer. Meth. Engng 41 (1998) 675-696, doi: 10.1002/(SICI)1097-0207(19980228)41:4675::AID-NME305>3.0.CO;2-8
[6] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Meth. Engng 32 (1991) 1205-1227, doi: 10.1002/nme.1620320604.
[7] Ch. Godsil and G. Royle, Algebraic Graph Theory (Springer-Verlag, New York, ISBN 0-387-95241-1, 2001).
[8] G.H. Golub and C.F. Van Loan, Matrix Computations (2nd ed.) (John Hopkins University Press, Baltimore, 1989).
[9] P. Kabelíková, T. Kozubek, A. Markopoulos and T. Brzobohatý, Effective Algorithms for Implementation of FETI-Based Domain Decomposition Methods, submited, 2009.
[10] G. Karypis and V. Kumar, METIS manual Version 4.0, [online] http://glaros.dtc.umn.edu/gkhome/views/metis, University of Minnesota, 1998.
[11] C.T. Pan, On the existence and factorization of rank-revealing LU factorizations, Linear Algebra and Its Applications 316 (2000) 199-222, doi: 10.1016/S0024-3795(00)00120-8.
[12] M. Papadrakakis and Y. Fragakis, An integrated geometric-algebraic method for solving semi-definite problems in structural mechanics, Computer Methods in Applied Mechanics and Engineering 190 (2001) 6513-6532, doi: 10.1016/S0045-7825(01)00234-1.
[13] K.C. Park and C.A. Felipa, The construction of free-free flexibility matrices for multilevel structural analysis, Int. J. Numer. Meth. Engng 47 (2000) 395-418, doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3395::AID-NME777>3.3.CO;2-0
[14] K.C. Park, C.A. Felipa and U.A. Gumaste, A localized version of the method of Lagrange multipliers, Computational Mechanics 24 (2000) 476-490, doi: 10.1007/s004660050007.