On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 237-244.

Voir la notice de l'article provenant de la source Library of Science

A graph G is said to be chromatic-choosable if ch(G) = χ(G). Ohba has conjectured that every graph G with 2χ(G)+1 or fewer vertices is chromatic-choosable. It is clear that Ohba's conjecture is true if and only if it is true for complete multipartite graphs. In this paper we show that Ohba's conjecture is true for complete multipartite graphs K_4,3*t,2*(k-2t-2),1*(t+1) for all integers t ≥ 1 and k ≥ 2t+2, that is, ch(K_4,3*t,2*(k-2t-2),1*(t+1)) = k, which extends the results ch(K_4,3,2*(k-4),1*2) = k given by Shen et al. (Discrete Math. 308 (2008) 136-143), and ch(K_4,3*2,2*(k-6),1*3) = k given by He et al. (Discrete Math. 308 (2008) 5871-5877).
Keywords: list coloring, complete multipartite graphs, chromatic-choosable graphs, Ohba's conjecture
@article{DMGT_2010_30_2_a3,
     author = {Zheng, Guo-Ping and Shen, Yu-Fa and Chen, Zuo-Li and Lv, Jin-Feng},
     title = {On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {237--244},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a3/}
}
TY  - JOUR
AU  - Zheng, Guo-Ping
AU  - Shen, Yu-Fa
AU  - Chen, Zuo-Li
AU  - Lv, Jin-Feng
TI  - On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 237
EP  - 244
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a3/
LA  - en
ID  - DMGT_2010_30_2_a3
ER  - 
%0 Journal Article
%A Zheng, Guo-Ping
%A Shen, Yu-Fa
%A Chen, Zuo-Li
%A Lv, Jin-Feng
%T On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 237-244
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a3/
%G en
%F DMGT_2010_30_2_a3
Zheng, Guo-Ping; Shen, Yu-Fa; Chen, Zuo-Li; Lv, Jin-Feng. On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 237-244. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a3/

[1] H. Enotomo, K. Ohba, K. Ota and J. Sakamoto, Choice number of some complete multipartite graphs, Discrete Math. 244 (2002) 55-66, doi: 10.1016/S0012-365X(01)00059-0.

[2] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125-157.

[3] S. Gravier and F. Maffray, Graphs whose choice number is equal to their chromatic number, J. Graph Theory 27 (1998) 87-97, doi: 10.1002/(SICI)1097-0118(199802)27:287::AID-JGT4>3.0.CO;2-B

[4] W. He, L. Zhang, Daniel W. Cranston, Y. Shen and G. Zheng, Choice number of complete multipartite graphs $K_{3*3,2*(k-5),1*2}$ and $K_{4,3*2,2*(k-6),1*3}$, Discrete Math. 308 (2008) 5871-5877, doi: 10.1016/j.disc.2007.10.046.

[5] H.A. Kierstead, On the choosability of complete multipartite graphs with part size three, Discrete Math. 211 (2000) 255-259, doi: 10.1016/S0012-365X(99)00157-0.

[6] K. Ohba, On chromatic choosable graphs, J. Graph Theory 40 (2002) 130-135, doi: 10.1002/jgt.10033.

[7] K. Ohba, Choice number of complete multipartite graphs with part size at most three, Ars Combinatoria 72 (2004) 133-139.

[8] B. Reed and B. Sudakov, List colouring when the chromatic number is close to the order of the graph, Combinatorica 25 (2005) 117-123, doi: 10.1007/s00493-005-0010-x.

[9] Y. Shen, W. He, G. Zheng and Y. Li, Ohba's conjecture is ture for graph with independence number at most three, Applied Mathematics Letters 22 (2009) 938-942, doi: 10.1016/j.aml.2009.01.001.

[10] Y. Shen, W. He, G. Zheng, Y. Wang and L. Zhang, On choosability of some complete multipartite graphs and Ohba's conjecture, Discrete Math. 308 (2008) 136-143, doi: 10.1016/j.disc.2007.03.059.

[11] Y. Shen, G. Zheng and W. He, Chromatic choosability of a class of complete multipartite graphs, J. Mathematical Research and Exposition 27 (2007) 264-272.

[12] Zs. Tuza, Graph colorings with local constrains-A survey, Discuss. Math. Graph Theory 17 (1997) 161-228, doi: 10.7151/dmgt.1049.

[13] V.G. Vizing, Coloring the vertices of a graph in prescribed colors (in Russian), Diskret. Anal. 29 (1976) 3-10.

[14] D.R. Woodall, List colourings of graphs, in: J.W.P. Hirschfeld (ed.), Surveys in Combinatorics, 2001, London Math. Soc. Lecture Note Series, vol. 288 (Cambridge University Press, Cambridge, UK, 2001) 269-301.