Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2010_30_2_a3, author = {Zheng, Guo-Ping and Shen, Yu-Fa and Chen, Zuo-Li and Lv, Jin-Feng}, title = {On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {237--244}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a3/} }
TY - JOUR AU - Zheng, Guo-Ping AU - Shen, Yu-Fa AU - Chen, Zuo-Li AU - Lv, Jin-Feng TI - On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$ JO - Discussiones Mathematicae. Graph Theory PY - 2010 SP - 237 EP - 244 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a3/ LA - en ID - DMGT_2010_30_2_a3 ER -
%0 Journal Article %A Zheng, Guo-Ping %A Shen, Yu-Fa %A Chen, Zuo-Li %A Lv, Jin-Feng %T On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$ %J Discussiones Mathematicae. Graph Theory %D 2010 %P 237-244 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a3/ %G en %F DMGT_2010_30_2_a3
Zheng, Guo-Ping; Shen, Yu-Fa; Chen, Zuo-Li; Lv, Jin-Feng. On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 237-244. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a3/
[1] H. Enotomo, K. Ohba, K. Ota and J. Sakamoto, Choice number of some complete multipartite graphs, Discrete Math. 244 (2002) 55-66, doi: 10.1016/S0012-365X(01)00059-0.
[2] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125-157.
[3] S. Gravier and F. Maffray, Graphs whose choice number is equal to their chromatic number, J. Graph Theory 27 (1998) 87-97, doi: 10.1002/(SICI)1097-0118(199802)27:287::AID-JGT4>3.0.CO;2-B
[4] W. He, L. Zhang, Daniel W. Cranston, Y. Shen and G. Zheng, Choice number of complete multipartite graphs $K_{3*3,2*(k-5),1*2}$ and $K_{4,3*2,2*(k-6),1*3}$, Discrete Math. 308 (2008) 5871-5877, doi: 10.1016/j.disc.2007.10.046.
[5] H.A. Kierstead, On the choosability of complete multipartite graphs with part size three, Discrete Math. 211 (2000) 255-259, doi: 10.1016/S0012-365X(99)00157-0.
[6] K. Ohba, On chromatic choosable graphs, J. Graph Theory 40 (2002) 130-135, doi: 10.1002/jgt.10033.
[7] K. Ohba, Choice number of complete multipartite graphs with part size at most three, Ars Combinatoria 72 (2004) 133-139.
[8] B. Reed and B. Sudakov, List colouring when the chromatic number is close to the order of the graph, Combinatorica 25 (2005) 117-123, doi: 10.1007/s00493-005-0010-x.
[9] Y. Shen, W. He, G. Zheng and Y. Li, Ohba's conjecture is ture for graph with independence number at most three, Applied Mathematics Letters 22 (2009) 938-942, doi: 10.1016/j.aml.2009.01.001.
[10] Y. Shen, W. He, G. Zheng, Y. Wang and L. Zhang, On choosability of some complete multipartite graphs and Ohba's conjecture, Discrete Math. 308 (2008) 136-143, doi: 10.1016/j.disc.2007.03.059.
[11] Y. Shen, G. Zheng and W. He, Chromatic choosability of a class of complete multipartite graphs, J. Mathematical Research and Exposition 27 (2007) 264-272.
[12] Zs. Tuza, Graph colorings with local constrains-A survey, Discuss. Math. Graph Theory 17 (1997) 161-228, doi: 10.7151/dmgt.1049.
[13] V.G. Vizing, Coloring the vertices of a graph in prescribed colors (in Russian), Diskret. Anal. 29 (1976) 3-10.
[14] D.R. Woodall, List colourings of graphs, in: J.W.P. Hirschfeld (ed.), Surveys in Combinatorics, 2001, London Math. Soc. Lecture Note Series, vol. 288 (Cambridge University Press, Cambridge, UK, 2001) 269-301.