On locating-domination in graphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 223-235.

Voir la notice de l'article provenant de la source Library of Science

A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number γ_L(G) is the minimum cardinality of a LDS of G, and the upper locating-domination number, Γ_L(G) is the maximum cardinality of a minimal LDS of G. We present different bounds on Γ_L(G) and γ_L(G).
Keywords: upper locating-domination number, locating-domination number
@article{DMGT_2010_30_2_a2,
     author = {Chellali, Mustapha and Mimouni, Malika and Slater, Peter},
     title = {On locating-domination in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {223--235},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a2/}
}
TY  - JOUR
AU  - Chellali, Mustapha
AU  - Mimouni, Malika
AU  - Slater, Peter
TI  - On locating-domination in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 223
EP  - 235
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a2/
LA  - en
ID  - DMGT_2010_30_2_a2
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%A Mimouni, Malika
%A Slater, Peter
%T On locating-domination in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 223-235
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a2/
%G en
%F DMGT_2010_30_2_a2
Chellali, Mustapha; Mimouni, Malika; Slater, Peter. On locating-domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 223-235. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a2/

[1] M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees, Australasian J. Combin. 33 (2005) 317-327.

[2] M. Blidia, M. Chellali, O. Favaron and N. Meddah, On k-independence in graphs with emphasis on trees, Discrete Math. 307 (2007) 2209-2216, doi: 10.1016/j.disc.2006.11.007.

[3] M. Blidia, M. Chellali, R. Lounes and F. Maffray, Characterizations of trees with unique minimum locating-dominating sets, submitted.

[4] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees, Australasian J. Combin. 39 (2007) 219-232.

[5] M. Blidia, O. Favaron and R. Lounes, Locating-domination, 2-domination and independence in trees, Australasian J. Combin. 42 (2008) 309-316.

[6] M. Farber, Domination, independent domination and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984) 115-130, doi: 10.1016/0166-218X(84)90061-1.

[7] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079.

[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[10] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104.

[11] G. Ravindra, Well covered graphs, J. Combin. Inform. System. Sci. 2 (1977) 20-21.

[12] P.J. Slater, Domination and location in acyclic graphs, Networks 17 (1987) 55-64, doi: 10.1002/net.3230170105.

[13] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455.