A note on cyclic chromatic number
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 115-122

Voir la notice de l'article provenant de la source Library of Science

A cyclic colouring of a graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number χ_c(G) of G is the smallest number of colours in a cyclic colouring of G. Plummer and Toft in 1987 conjectured that χ_c(G) ≤ Δ* + 2 for any 3-connected plane graph G with maximum face degree Δ*. It is known that the conjecture holds true for Δ* ≤ 4 and Δ* ≥ 18. The validity of the conjecture is proved in the paper for some special classes of planar graphs.
Keywords: plane graph, cyclic colouring, cyclic chromatic number
@article{DMGT_2010_30_1_a9,
     author = {Zl\'amalov\'a, Jana},
     title = {A note on cyclic chromatic number},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {115--122},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a9/}
}
TY  - JOUR
AU  - Zlámalová, Jana
TI  - A note on cyclic chromatic number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 115
EP  - 122
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a9/
LA  - en
ID  - DMGT_2010_30_1_a9
ER  - 
%0 Journal Article
%A Zlámalová, Jana
%T A note on cyclic chromatic number
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 115-122
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a9/
%G en
%F DMGT_2010_30_1_a9
Zlámalová, Jana. A note on cyclic chromatic number. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 115-122. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a9/