The signless Laplacian spectral radius of graphs with given number of cut vertices
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 85-93.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.
Keywords: graph, cut vertex, signless Laplacian matrix, spectral radius
@article{DMGT_2010_30_1_a6,
     author = {Cui, Lin and Fan, Yi-Zheng},
     title = {The signless {Laplacian} spectral radius of graphs with given number of cut vertices},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a6/}
}
TY  - JOUR
AU  - Cui, Lin
AU  - Fan, Yi-Zheng
TI  - The signless Laplacian spectral radius of graphs with given number of cut vertices
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 85
EP  - 93
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a6/
LA  - en
ID  - DMGT_2010_30_1_a6
ER  - 
%0 Journal Article
%A Cui, Lin
%A Fan, Yi-Zheng
%T The signless Laplacian spectral radius of graphs with given number of cut vertices
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 85-93
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a6/
%G en
%F DMGT_2010_30_1_a6
Cui, Lin; Fan, Yi-Zheng. The signless Laplacian spectral radius of graphs with given number of cut vertices. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a6/

[1] W.N. Anderson and T.D. Morely, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985) 141-145, doi: 10.1080/03081088508817681.

[2] A. Berman and X.-D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin. Theory (B) 83 (2001) 233-240, doi: 10.1006/jctb.2001.2052.

[3] D. Cvetković, M. Doob and H. Sachs, Spectra of graphs, (third ed., Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995).

[4] D. Cvetković, Signless Laplacians and line graphs, Bull. Acad. Serbe Sci. Ars. Cl. Sci. Math. Nat. Sci. Math. 131 (30) (2005) 85-92.

[5] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171, doi: 10.1016/j.laa.2007.01.009.

[6] E.R. van Dam and W. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl. 373 (2003) 241-272, doi: 10.1016/S0024-3795(03)00483-X.

[7] M. Desai and V. Rao, A characterization of the smallest eigenvalue of a graph, J. Graph Theory 18 (1994) 181-194, doi: 10.1002/jgt.3190180210.

[8] Y.-Z. Fan, B.-S. Tam and J. Zhou, Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a given order, Linear Multilinear Algebra 56 (2008) 381-397, doi: 10.1080/03081080701306589.

[9] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.

[10] R. Grone and R. Merris, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016.

[11] J.W. Grossman, D.M. Kulkarni and I. Schochetman, Algebraic graph theory without orientation, Linear Algebra Appl. 212/213 (1994) 289-307, doi: 10.1016/0024-3795(94)90407-3.

[12] W. Haemer and E. Spence, Enumeration of cospectral graphs, Europ. J. Combin. 25 (2004) 199-211, doi: 10.1016/S0195-6698(03)00100-8.

[13] Q. Li and K.-Q. Feng, On the largest eigenvalues of graphs, (in Chinese), Acta Math. Appl. Sin. 2 (1979) 167-175.

[14] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197/198 (1994) 143-176, doi: 10.1016/0024-3795(94)90486-3.

[15] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry (G. Hahn and G. Sabidussi Eds), (Kluwer Academic Publishers, Dordrecht, 1997), 225-275.

[16] B.-S. Tam, Y.-Z. Fan and J. Zhou, Unoriented Laplacian maximizing graphs are degree maximal, Linear Algebra Appl. 429 (2008) 735-758, doi: 10.1016/j.laa.2008.04.002.

[17] Shangwang Tan and Xingke Wang, On the largest eigenvalue of signless Laplacian matrix of a graph, Journal of Mathematical Reserch and Exposion 29 (2009) 381-390.

[18] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 362 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8.