A conjecture on the prevalence of cubic bridge graphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 175-179.

Voir la notice de l'article provenant de la source Library of Science

Almost all d-regular graphs are Hamiltonian, for d ≥ 3 [8]. In this note we conjecture that in a similar, yet somewhat different, sense almost all cubic non-Hamiltonian graphs are bridge graphs, and present supporting empirical results for this prevalence of the latter among all connected cubic non-Hamiltonian graphs.
Keywords: Hamiltonian graph, non-Hamiltonian graph, cubic bridge graph
@article{DMGT_2010_30_1_a13,
     author = {Filar, Jerzy and Haythorpe, Michael and Nguyen, Giang},
     title = {A conjecture on the prevalence of cubic bridge graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {175--179},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a13/}
}
TY  - JOUR
AU  - Filar, Jerzy
AU  - Haythorpe, Michael
AU  - Nguyen, Giang
TI  - A conjecture on the prevalence of cubic bridge graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 175
EP  - 179
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a13/
LA  - en
ID  - DMGT_2010_30_1_a13
ER  - 
%0 Journal Article
%A Filar, Jerzy
%A Haythorpe, Michael
%A Nguyen, Giang
%T A conjecture on the prevalence of cubic bridge graphs
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 175-179
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a13/
%G en
%F DMGT_2010_30_1_a13
Filar, Jerzy; Haythorpe, Michael; Nguyen, Giang. A conjecture on the prevalence of cubic bridge graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 175-179. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a13/

[1] B. Bollobas, Random Graphs (Cambridge University Press, 2001), doi: 10.1017/CBO9780511814068.

[2] V. Ejov, J.A. Filar S.K. Lucas and P. Zograf, Clustering of spectra and fractals of regular graphs, J. Math. Anal. and Appl. 333 (2007) 236-246, doi: 10.1016/j.jmaa.2006.09.072.

[3] V. Ejov, S. Friedland and G.T. Nguyen, A note on the graph's resolvent and the multifilar structure, Linear Algebra and Its Application 431 (2009) 1367-1379, doi: 10.1016/j.laa.2009.05.019.

[4] A.S. Lague, Les reseaux (ou graphes), Memorial des sciences math. 18 (1926).

[5] B.D. McKay, website for nauty: http://cs.anu.edu.au/ bdm/nauty/.

[6] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Ttheory 30 (1999) 137-146, doi: 10.1002/(SICI)1097-0118(199902)30:2137::AID-JGT7>3.0.CO;2-G

[7] G.T. Nguyen, Hamiltonian cycle problem, Markov decision processes and graph spectra, PhD Thesis (University of South Australia, 2009).

[8] R. Robinson and N. Wormald, Almost all regular graphs are Hamiltonian, Random Structures and Algorithms 5 (1994) 363-374, doi: 10.1002/rsa.3240050209.