@article{DMGT_2010_30_1_a11,
author = {Okamoto, Futaba and Salehi, Ebrahim and Zhang, Ping},
title = {On multiset colorings of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {137--153},
year = {2010},
volume = {30},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a11/}
}
Okamoto, Futaba; Salehi, Ebrahim; Zhang, Ping. On multiset colorings of graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 137-153. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a11/
[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244, doi: 10.1016/j.jctb.2005.01.001.
[2] M. Anderson, C. Barrientos, R.C. Brigham, J.R. Carrington, M. Kronman, R.P. Vitray and J. Yellen, Irregular colorings of some graph classes, Bull. Inst. Combin. Appl., to appear.
[3] R.L. Brooks, On coloring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X.
[4] A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129-140.
[5] G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13-32.
[6] G. Chartrand, L. Lesniak, D.W. VanderJagt and P. Zhang, Recognizable colorings of graphs, Discuss. Math. Graph Theory 28 (2008) 35-57, doi: 10.7151/dmgt.1390.
[7] G. Chartrand, F. Okamoto, E. Salehi and P. Zhang, The multiset chromatic number of a graph, Math. Bohem. 134 (2009) 191-209.
[8] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman Hall/CRC Press, Boca Raton, FL, 2009).
[9] H. Escuadro, F. Okamoto and P. Zhang, A three-color problem in graph theory, Bull. Inst. Combin. Appl. 52 (2008) 65-82.
[10] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157, doi: 10.1016/j.jctb.2003.12.001.
[11] M. Radcliffe and P. Zhang, Irregular colorings of graphs, Bull. Inst. Combin. Appl. 49 (2007) 41-59.