Recursive generation of simple planar quadrangulations with vertices of degree 3 and 4
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 123-136

Voir la notice de l'article provenant de la source Library of Science

We describe how the simple planar quadrangulations with vertices of degree 3 and 4, whose duals are known as octahedrites, can all be obtained from an elementary family of starting graphs by repeatedly applying two expansion operations. This allows for construction of a linear time generator of all graphs in the class with at most a given order, up to isomorphism.
Keywords: planar graph, octahedrite, quadrangulation, generation
@article{DMGT_2010_30_1_a10,
     author = {Hasheminezhad, Mahdieh and McKay, Brendan},
     title = {Recursive generation of simple planar quadrangulations with vertices of degree 3 and 4},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a10/}
}
TY  - JOUR
AU  - Hasheminezhad, Mahdieh
AU  - McKay, Brendan
TI  - Recursive generation of simple planar quadrangulations with vertices of degree 3 and 4
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 123
EP  - 136
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a10/
LA  - en
ID  - DMGT_2010_30_1_a10
ER  - 
%0 Journal Article
%A Hasheminezhad, Mahdieh
%A McKay, Brendan
%T Recursive generation of simple planar quadrangulations with vertices of degree 3 and 4
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 123-136
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a10/
%G en
%F DMGT_2010_30_1_a10
Hasheminezhad, Mahdieh; McKay, Brendan. Recursive generation of simple planar quadrangulations with vertices of degree 3 and 4. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 123-136. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a10/