The periphery graph of a median graph
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 17-32.

Voir la notice de l'article provenant de la source Library of Science

The periphery graph of a median graph is the intersection graph of its peripheral subgraphs. We show that every graph without a universal vertex can be realized as the periphery graph of a median graph. We characterize those median graphs whose periphery graph is the join of two graphs and show that they are precisely Cartesian products of median graphs. Path-like median graphs are introduced as the graphs whose periphery graph has independence number 2, and it is proved that there are path-like median graphs with arbitrarily large geodetic number. Peripheral expansion with respect to periphery graph is also considered, and connections with the concept of crossing graph are established.
Keywords: median graph, Cartesian product, geodesic, periphery, peripheral expansion
@article{DMGT_2010_30_1_a1,
     author = {Bre\v{s}ar, Bo\v{s}tjan and Changat, Manoj and Subhamathi, Ajitha and Tepeh, Aleksandra},
     title = {The periphery graph of a median graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {17--32},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a1/}
}
TY  - JOUR
AU  - Brešar, Boštjan
AU  - Changat, Manoj
AU  - Subhamathi, Ajitha
AU  - Tepeh, Aleksandra
TI  - The periphery graph of a median graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 17
EP  - 32
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a1/
LA  - en
ID  - DMGT_2010_30_1_a1
ER  - 
%0 Journal Article
%A Brešar, Boštjan
%A Changat, Manoj
%A Subhamathi, Ajitha
%A Tepeh, Aleksandra
%T The periphery graph of a median graph
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 17-32
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a1/
%G en
%F DMGT_2010_30_1_a1
Brešar, Boštjan; Changat, Manoj; Subhamathi, Ajitha; Tepeh, Aleksandra. The periphery graph of a median graph. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 17-32. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a1/

[1] K. Balakrishnan, B. Brešar, M. Changat, W. Imrich, S. Klavžar, M. Kovse and A.R. Subhamathi, On the remoteness function in median graphs, Discrete Appl. Math. 157 (2009) 3679-3688, doi: 10.1016/j.dam.2009.07.007.

[2] H.-J. Bandelt and V. Chepoi, Graphs of acyclic cubical complexes, European J. Combin. 17 (1996) 113-120, doi: 10.1006/eujc.1996.0010.

[3] H.-J. Bandelt, H.M. Mulder and E. Wilkeit, Quasi-median graphs and algebras, J. Graph Theory 18 (1994) 681-703, doi: 10.1002/jgt.3190180705.

[4] H.-J. Bandelt and M. van de Vel, Embedding topological median algebras in products of dendrons, Proc. London Math. Soc. 58 (1989) 439-453, doi: 10.1112/plms/s3-58.3.439.

[5] H.-J. Bandelt, L. Quintana-Murci, A. Salas and V. Macaulay, The fingerprint of phantom mutations in mitochondrial DNA data, American J. Human Genetics 71 (2002) 1150-1160, doi: 10.1086/344397.

[6] B. Brešar, Arboreal structure and regular graphs of median-like classes, Discuss. Math. Graph Theory 23 (2003) 215-225, doi: 10.7151/dmgt.1198.

[7] B. Brešar and S. Klavžar, Crossing graphs as joins of graphs and Cartesian products of median graphs, SIAM J. Discrete Math. 21 (2007) 26-32, doi: 10.1137/050622997.

[8] B. Brešar and T. Kraner Sumenjak, Cube intersection concepts in median graphs, Discrete Math. 309 (2009) 2990-2997, doi: 10.1016/j.disc.2008.07.032.

[9] B. Brešar and A. Tepeh Horvat, Crossing graphs of fiber-complemented graphs, Discrete Math. 308 (2008) 1176-1184, doi: 10.1016/j.disc.2007.04.005.

[10] B. Brešar and A. Tepeh Horvat, On the geodetic number of median graphs, Discrete Math. 308 (2008) 4044-4051, doi: 10.1016/j.disc.2007.07.119.

[11] M. Chastand, Fiber-complemented graphs, I. Structure and invariant subgraphs, Discrete Math. 226 (2001) 107-141, doi: 10.1016/S0012-365X(00)00183-7.

[12] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory (B) 14 (1973) 263-267, doi: 10.1016/0095-8956(73)90010-5.

[13] A. Dress, K. Huber and V. Moulton, Some variations on a theme by Buneman, Ann. Combin. 1 (1997) 339-352, doi: 10.1007/BF02558485.

[14] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).

[15] W. Imrich, S. Klavžar and H.M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12 (1999) 111-118, doi: 10.1137/S0895480197323494.

[16] S. Klavžar and M. Kovse, Partial cubes and their τ-graphs, European J. Combin. 28 (2007) 1037-1042.

[17] S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127.

[18] S. Klavžar and H.M. Mulder, Partial cubes and crossing graphs, SIAM J. Discrete Math. 15 (2002) 235-251, doi: 10.1137/S0895480101383202.

[19] H.M. Mulder, The expansion procedure for graphs, in: R. Bodendiek ed., Contemporary Methods in Graph Theory (B.I.-Wissenschaftsverlag, Manhaim/Wien/Zürich, 1990) 459-477.

[20] J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955) 161-162.

[21] I. Peterin, A characterization of planar median graphs, Discuss. Math. Graph Theory 26 (2006) 41-48, doi: 10.7151/dmgt.1299.

[22] A. Vesel, Characterization of resonance graphs of catacondensed hexagonal graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 195-208.

[23] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225, doi: 10.1016/0166-218X(84)90069-6.