Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_3_a9, author = {Ferrara, Michael and Jacobson, Michael and Schmitt, John and Siggers, Mark}, title = {Potentially {H-bigraphic} sequences}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {583--596}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a9/} }
TY - JOUR AU - Ferrara, Michael AU - Jacobson, Michael AU - Schmitt, John AU - Siggers, Mark TI - Potentially H-bigraphic sequences JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 583 EP - 596 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a9/ LA - en ID - DMGT_2009_29_3_a9 ER -
Ferrara, Michael; Jacobson, Michael; Schmitt, John; Siggers, Mark. Potentially H-bigraphic sequences. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 583-596. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a9/
[1] F. Chung and R. Graham, Erdös on Graphs (A K Peters Ltd, 1998).
[2] P. Erdös, M.S. Jacobson and J. Lehel, Graphs Realizing the Same Degree Sequence and their Respective Clique Numbers, in: Graph Theory, Combinatorics and Applications, Vol. I, ed. Alavi, Chartrand, Oellerman and Schwenk (1991) 439-449.
[3] D. Gale, A theorem on flows in networks, Pac. J. Math. 7 (1957) 1073-1082.
[4] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphic degree sequences, in: Combinatorics, Graph Theory, and Algorithms Vol. I, eds. Alavi, Lick and Schwenk (New York: Wiley Sons, Inc., 1999) 387-400.
[5] C. Lai, The smallest degree sum that yields potentially Cₖ-graphical sequence, J. Combin. Math. Combin. Computing 49 (2004) 57-64.
[6] J. Li and Z. Song, The smallest degree sum that yields potentially Pₖ-graphical sequences, J. Graph Theory 29 (1998) 63-72, doi: 10.1002/(SICI)1097-0118(199810)29:263::AID-JGT2>3.0.CO;2-A
[7] J. Li, Z. Song and R. Luo, The Erdös-Jacobson-Lehel conjecture on potentially Pₖ-graphic sequences is true, Science in China (A) 41 (1998) 510-520, doi: 10.1007/BF02879940.
[8] J. Li and J. Yin, The smallest degree sum that yields potentially K_{r,r}-graphic sequences, Science in China (A) 45 (2002) 694-705.
[9] J. Li and J. Yin, An extremal problem on potentially K_{r,s}-graphic sequences, Discrete Math. 260 (2003) 295-305, doi: 10.1016/S0012-365X(02)00765-3.
[10] R. Luo, On potentially Cₖ-graphic sequences, Ars Combin. 64 (2002) 301-318.
[11] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371-377, doi: 10.4153/CJM-1957-044-3.
[12] K. Zarankiewicz, Problem P 101, Colloq. Math. 2 (1951) 301.