Potentially H-bigraphic sequences
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 583-596

Voir la notice de l'article provenant de la source Library of Science

We extend the notion of a potentially H-graphic sequence as follows. Let A and B be nonnegative integer sequences. The sequence pair S = (A,B) is said to be bigraphic if there is some bipartite graph G = (X ∪ Y,E) such that A and B are the degrees of the vertices in X and Y, respectively. If S is a bigraphic pair, let σ(S) denote the sum of the terms in A.
Keywords: degree sequence, bipartite graph, potential number
@article{DMGT_2009_29_3_a9,
     author = {Ferrara, Michael and Jacobson, Michael and Schmitt, John and Siggers, Mark},
     title = {Potentially {H-bigraphic} sequences},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {583--596},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a9/}
}
TY  - JOUR
AU  - Ferrara, Michael
AU  - Jacobson, Michael
AU  - Schmitt, John
AU  - Siggers, Mark
TI  - Potentially H-bigraphic sequences
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 583
EP  - 596
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a9/
LA  - en
ID  - DMGT_2009_29_3_a9
ER  - 
%0 Journal Article
%A Ferrara, Michael
%A Jacobson, Michael
%A Schmitt, John
%A Siggers, Mark
%T Potentially H-bigraphic sequences
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 583-596
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a9/
%G en
%F DMGT_2009_29_3_a9
Ferrara, Michael; Jacobson, Michael; Schmitt, John; Siggers, Mark. Potentially H-bigraphic sequences. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 583-596. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a9/