Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_3_a7, author = {Meszka, Mariusz and Skupie\'n, Zdzis{\l}aw}, title = {Decompositions of nearly complete digraphs into t isomorphic parts}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {563--572}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a7/} }
TY - JOUR AU - Meszka, Mariusz AU - Skupień, Zdzisław TI - Decompositions of nearly complete digraphs into t isomorphic parts JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 563 EP - 572 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a7/ LA - en ID - DMGT_2009_29_3_a7 ER -
Meszka, Mariusz; Skupień, Zdzisław. Decompositions of nearly complete digraphs into t isomorphic parts. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 563-572. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a7/
[1] B. Alspach, H. Gavlas, M. Sajna and H. Verrall, Cycle decopositions IV: complete directed graphs and fixed length directed cycles, J. Combin. Theory (A) 103 (2003) 165-208, doi: 10.1016/S0097-3165(03)00098-0.
[2] C. Berge, Graphs and Hypergraphs (North-Holland, 1973).
[3] J.C. Bermond and V. Faber, Decomposition of the complete directed graph into k-circuits, J. Combin. Theory (B) 21 (1976) 146-155, doi: 10.1016/0095-8956(76)90055-1.
[4] J. Bosák, Decompositions of Graphs (Dordrecht, Kluwer, 1990, [Slovak:] Bratislava, Veda, 1986).
[5] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman Hall, 1996).
[6] A. Fortuna and Z. Skupień, On nearly third parts of complete digraphs and complete 2-graphs, manuscript.
[7] F. Harary and R.W. Robinson, Isomorphic factorizations X: Unsolved problems, J. Graph Theory 9 (1985) 67-86, doi: 10.1002/jgt.3190090105.
[8] F. Harary, R.W. Robinson and N.C. Wormald, Isomorphic factorisation V: Directed graphs, Mathematika 25 (1978) 279-285, doi: 10.1112/S0025579300009529.
[9] A. Kedzior and Z. Skupień, Universal sixth parts of a complete graph exist, manuscript.
[10] E. Lucas, Récréations Mathématiques, vol. II (Paris, Gauthier-Villars, 1883).
[11] M. Meszka and Z. Skupień, Self-converse and oriented graphs among the third parts of nearly complete digraphs, Combinatorica 18 (1998) 413-424, doi: 10.1007/PL00009830.
[12] M. Meszka and Z. Skupień, On some third parts of nearly complete digraphs, Discrete Math. 212 (2000) 129-139, doi: 10.1016/S0012-365X(99)00214-9.
[13] M. Meszka and Z. Skupień, Decompositions of a complete multidigraph into nonhamiltonian paths, J. Graph Theory 51 (2006) 82-91, doi: 10.1002/jgt.20122.
[14] M. Plantholt, The chromatic index of graphs with a spanning star, J. Graph Theory 5 (1981) 45-53, doi: 10.1002/jgt.3190050103.
[15] R.C. Read, On the number of self-complementary graphs and digraphs, J. London Math. Soc. 38 (1963) 99-104, doi: 10.1112/jlms/s1-38.1.99.
[16] Z. Skupień, The complete graph t-packings and t-coverings, Graphs Combin. 9 (1993) 353-363, doi: 10.1007/BF02988322.
[17] Z. Skupień, Clique parts independent of remainders, Discuss. Math. Graph Theory 22 (2002) 361, doi: 10.7151/dmgt.1181.
[18] Z. Skupień, Universal fractional parts of a complete graph, manuscript.