The set chromatic number of a graph
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 545-561.

Voir la notice de l'article provenant de la source Library of Science

For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs are determined and several bounds are established for the set chromatic number of a graph in terms of other graphical parameters.
Keywords: neighbor-distinguishing coloring, set coloring, neighborhood color set
@article{DMGT_2009_29_3_a6,
     author = {Chartrand, Gary and Okamoto, Futaba and Rasmussen, Craig and Zhang, Ping},
     title = {The set chromatic number of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {545--561},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a6/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Okamoto, Futaba
AU  - Rasmussen, Craig
AU  - Zhang, Ping
TI  - The set chromatic number of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 545
EP  - 561
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a6/
LA  - en
ID  - DMGT_2009_29_3_a6
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Okamoto, Futaba
%A Rasmussen, Craig
%A Zhang, Ping
%T The set chromatic number of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 545-561
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a6/
%G en
%F DMGT_2009_29_3_a6
Chartrand, Gary; Okamoto, Futaba; Rasmussen, Craig; Zhang, Ping. The set chromatic number of a graph. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 545-561. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a6/

[1] P.N. Balister, E. Gyori, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250, doi: 10.1137/S0895480102414107.

[2] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge colorings, J. Graph Theory 26 (1997) 73-82, doi: 10.1002/(SICI)1097-0118(199710)26:273::AID-JGT2>3.0.CO;2-C

[3] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman Hall/CRC Press, Boca Raton, 2008), doi: 10.1201/9781584888017.

[4] F. Harary and M. Plantholt, The point-distinguishing chromatic index, Graphs and Applications (Wiley, New York, 1985) 147-162.