Colouring vertices of plane graphs under restrictions given by faces
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 521-543.

Voir la notice de l'article provenant de la source Library of Science

We consider a vertex colouring of a connected plane graph G. A colour c is used k times by a face α of G if it appears k times along the facial walk of α. We prove that every connected plane graph with minimum face degree at least 3 has a vertex colouring with four colours such that every face uses some colour an odd number of times. We conjecture that such a colouring can be done using three colours. We prove that this conjecture is true for 2-connected cubic plane graphs. Next we consider other three kinds of colourings that require stronger restrictions.
Keywords: vertex colouring, plane graph, weak parity vertex colouring, strong parity vertex colouring, proper colouring, Lebesgue theorem
@article{DMGT_2009_29_3_a5,
     author = {Czap, J\'ulius and Jendrol', Stanislav},
     title = {Colouring vertices of plane graphs under restrictions given by faces},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {521--543},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a5/}
}
TY  - JOUR
AU  - Czap, Július
AU  - Jendrol', Stanislav
TI  - Colouring vertices of plane graphs under restrictions given by faces
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 521
EP  - 543
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a5/
LA  - en
ID  - DMGT_2009_29_3_a5
ER  - 
%0 Journal Article
%A Czap, Július
%A Jendrol', Stanislav
%T Colouring vertices of plane graphs under restrictions given by faces
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 521-543
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a5/
%G en
%F DMGT_2009_29_3_a5
Czap, Július; Jendrol', Stanislav. Colouring vertices of plane graphs under restrictions given by faces. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 521-543. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a5/

[1] K. Appel and W. Haken, Every planar map is four colorable, Contemporary Mathematics 98 (American Mathematical Society, 1989).

[2] K. Budajová, S. Jendrol and S. Krajci, Parity vertex colouring of graphs, manuscript (2007).

[3] D.P. Bunde, K. Milans, D.B. West and H. Wu, Parity and strong parity edge-coloring of graphs, manuscript (2006).

[4] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman HALL/CRC, Boca Raton, 2005).

[5] H. Enomoto, M. Hornák and S. Jendrol, Cyclic chromatic number of 3-connected plane graphs, SIAM J. Discrete Math. 14 (2001) 121-137, doi: 10.1137/S0895480198346150.

[6] M. Hornák and S. Jendrol, On a conjecture by Plummer and Toft, J. Graph Theory 30 (1999) 177-189, doi: 10.1002/(SICI)1097-0118(199903)30:3177::AID-JGT3>3.0.CO;2-K

[7] M. Hornák and J. Zlámalová, Another step towards proving a conjecture by Plummer and Toft, IM Preprint, series A, No.11/2006 (2006).

[8] S. Jendrol, Rainbowness of cubic plane graphs, Discrete Math. 306 (2006) 3321-3326, doi: 10.1016/j.disc.2006.06.012.

[9] V. Jungic, D. Král and R. Skrekovski, Coloring of plane graphs with no rainbow faces, Combinatorica 26 (2006) 169-182, doi: 10.1007/s00493-006-0012-3.

[10] H. Lebesgue, Quelques consequences simple de la formula d'Euler, J. de Math. Pures Appl. 9 (1940) 27-43.

[11] M. Molloy and M.R. Salavatipour, A bound on the cyclic chromatic number of the square of a planar graph, J. Combin. Theory (B) 94 (2005) 189-213, doi: 10.1016/j.jctb.2004.12.005.

[12] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: W.T. Tutte, Recent Progress in Combinatorics Academic Press (1969) 287-293.

[13] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515, doi: 10.1002/jgt.3190110407.

[14] N. Rampersad, A note on non-repetitive colourings of planar graphs, manuscript (2003).

[15] R. Ramamurthi and D.B. West, Maximum face-constrained coloring of plane graphs, Discrete Math. 274 (2004) 233-240, doi: 10.1016/j.disc.2003.09.001.

[16] D.P. Sanders and Y. Zhao, A new bound on the cyclic chromatic number, J. Combin. Theory (B) 83 (2001) 102-111, doi: 10.1006/jctb.2001.2046.