The list linear arboricity of planar graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 499-510

Voir la notice de l'article provenant de la source Library of Science

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having Δ ≥ 13, or for any planar graph with Δ ≥ 7 and without i-cycles for some i ∈ 3,4,5. We also prove that ⌈½Δ(G)⌉ ≤ lla(G) ≤ ⌈½(Δ(G)+1)⌉ for any planar graph having Δ ≥ 9.
Keywords: list coloring, linear arboricity, list linear arboricity, planar graph
@article{DMGT_2009_29_3_a3,
     author = {An, Xinhui and Wu, Baoyindureng},
     title = {The list linear arboricity of planar graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {499--510},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a3/}
}
TY  - JOUR
AU  - An, Xinhui
AU  - Wu, Baoyindureng
TI  - The list linear arboricity of planar graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 499
EP  - 510
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a3/
LA  - en
ID  - DMGT_2009_29_3_a3
ER  - 
%0 Journal Article
%A An, Xinhui
%A Wu, Baoyindureng
%T The list linear arboricity of planar graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 499-510
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a3/
%G en
%F DMGT_2009_29_3_a3
An, Xinhui; Wu, Baoyindureng. The list linear arboricity of planar graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 499-510. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a3/