Packing of nonuniform hypergraphs - product and sum of sizes conditions
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 651-656.

Voir la notice de l'article provenant de la source Library of Science

Hypergraphs H₁,...,H_N of order n are mutually packable if one can find their edge disjoint copies in the complete hypergraph of order n. We prove that two hypergraphs are mutually packable if the product of their sizes satisfies some upper bound. Moreover we show that an arbitrary set of the hypergraphs is mutually packable if the sum of their sizes is sufficiently small.
Keywords: nonuniform hypergraph, packing
@article{DMGT_2009_29_3_a14,
     author = {Naroski, Pawe{\l}},
     title = {Packing of nonuniform hypergraphs - product and sum of sizes conditions},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {651--656},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a14/}
}
TY  - JOUR
AU  - Naroski, Paweł
TI  - Packing of nonuniform hypergraphs - product and sum of sizes conditions
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 651
EP  - 656
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a14/
LA  - en
ID  - DMGT_2009_29_3_a14
ER  - 
%0 Journal Article
%A Naroski, Paweł
%T Packing of nonuniform hypergraphs - product and sum of sizes conditions
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 651-656
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a14/
%G en
%F DMGT_2009_29_3_a14
Naroski, Paweł. Packing of nonuniform hypergraphs - product and sum of sizes conditions. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 651-656. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a14/

[1] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.

[2] D. Burns and S. Schuster, Embeddings (p,p-1) graphs in their complements, Israel J. Math. 4, 30 (1978) 313-320, doi: 10.1007/BF02761996.

[3] M. Pilśniak and M. Woźniak, A note on packing of two copies of a hypergraph, Discuss. Math. Graph Theory 27 (2007) 45-49, doi: 10.7151/dmgt.1343.

[4] V. Rödl, A. Ruciński and A. Taraz, Hypergraph packing and graph embedding, Combinatorics, Probability and Computing 8 (1999) 363-376, doi: 10.1017/S0963548399003879.

[5] N. Sauer and J. Spencer, Edge disjoint placements of graphs, J. Combin. Theory (B) 25 (1978) 295-302, doi: 10.1016/0095-8956(78)90005-9.

[6] S. Schuster, Fixed-point-free embeddings of graphs in their complements, Internat. J. Math. Math. Sci. 1 (1978) 335-338, doi: 10.1155/S0161171278000356.

[7] M. Woźniak, Embedding graphs of small size, Discrete Appl. Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0.

[8] M. Woźniak, Packing of graphs, Dissertationes Math. 362 (1997) 1-78.

[9] M. Woźniak, Packing of graphs and permutations - a survey, Discrete Math. 276 (2004) 379-391, doi: 10.1016/S0012-365X(03)00296-6.

[10] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.