Bounds on the global offensive k-alliance number in graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 597-613

Voir la notice de l'article provenant de la source Library of Science

Let G = (V(G),E(G)) be a graph, and let k ≥ 1 be an integer. A set S ⊆ V(G) is called a global offensive k-alliance if |N(v)∩S| ≥ |N(v)-S|+k for every v ∈ V(G)-S, where N(v) is the neighborhood of v. The global offensive k-alliance number γₒ^k(G) is the minimum cardinality of a global offensive k-alliance in G. We present different bounds on γₒ^k(G) in terms of order, maximum degree, independence number, chromatic number and minimum degree.
Keywords: global offensive k-alliance number, independence number, chromatic number
@article{DMGT_2009_29_3_a10,
     author = {Chellali, Mustapha and Haynes, Teresa and Randerath, Bert and Volkmann, Lutz},
     title = {Bounds on the global offensive k-alliance number in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {597--613},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a10/}
}
TY  - JOUR
AU  - Chellali, Mustapha
AU  - Haynes, Teresa
AU  - Randerath, Bert
AU  - Volkmann, Lutz
TI  - Bounds on the global offensive k-alliance number in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 597
EP  - 613
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a10/
LA  - en
ID  - DMGT_2009_29_3_a10
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%A Haynes, Teresa
%A Randerath, Bert
%A Volkmann, Lutz
%T Bounds on the global offensive k-alliance number in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 597-613
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a10/
%G en
%F DMGT_2009_29_3_a10
Chellali, Mustapha; Haynes, Teresa; Randerath, Bert; Volkmann, Lutz. Bounds on the global offensive k-alliance number in graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 597-613. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a10/