Bounds on the global offensive k-alliance number in graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 597-613
Voir la notice de l'article provenant de la source Library of Science
Let G = (V(G),E(G)) be a graph, and let k ≥ 1 be an integer. A set S ⊆ V(G) is called a global offensive k-alliance if |N(v)∩S| ≥ |N(v)-S|+k for every v ∈ V(G)-S, where N(v) is the neighborhood of v. The global offensive k-alliance number γₒ^k(G) is the minimum cardinality of a global offensive k-alliance in G. We present different bounds on γₒ^k(G) in terms of order, maximum degree, independence number, chromatic number and minimum degree.
Keywords:
global offensive k-alliance number, independence number, chromatic number
@article{DMGT_2009_29_3_a10,
author = {Chellali, Mustapha and Haynes, Teresa and Randerath, Bert and Volkmann, Lutz},
title = {Bounds on the global offensive k-alliance number in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {597--613},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a10/}
}
TY - JOUR AU - Chellali, Mustapha AU - Haynes, Teresa AU - Randerath, Bert AU - Volkmann, Lutz TI - Bounds on the global offensive k-alliance number in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 597 EP - 613 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a10/ LA - en ID - DMGT_2009_29_3_a10 ER -
%0 Journal Article %A Chellali, Mustapha %A Haynes, Teresa %A Randerath, Bert %A Volkmann, Lutz %T Bounds on the global offensive k-alliance number in graphs %J Discussiones Mathematicae. Graph Theory %D 2009 %P 597-613 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a10/ %G en %F DMGT_2009_29_3_a10
Chellali, Mustapha; Haynes, Teresa; Randerath, Bert; Volkmann, Lutz. Bounds on the global offensive k-alliance number in graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 597-613. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a10/