On transitive orientations of G-ê
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 423-467.

Voir la notice de l'article provenant de la source Library of Science

A comparability graph is a graph whose edges can be oriented transitively. Given a comparability graph G = (V,E) and an arbitrary edge ê∈ E we explore the question whether the graph G-ê, obtained by removing the undirected edge ê, is a comparability graph as well. We define a new substructure of implication classes and present a complete mathematical characterization of all those edges.
Keywords: comparability graph, edge deletion, transitive orientation, Triangle Lemma, Γ-components, open shop scheduling, irreducibility
@article{DMGT_2009_29_3_a0,
     author = {Andresen, Michael},
     title = {On transitive orientations of {G-\^e}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {423--467},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a0/}
}
TY  - JOUR
AU  - Andresen, Michael
TI  - On transitive orientations of G-ê
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 423
EP  - 467
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a0/
LA  - en
ID  - DMGT_2009_29_3_a0
ER  - 
%0 Journal Article
%A Andresen, Michael
%T On transitive orientations of G-ê
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 423-467
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a0/
%G en
%F DMGT_2009_29_3_a0
Andresen, Michael. On transitive orientations of G-ê. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 423-467. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a0/

[1] H. Bräsel, Lateinische Rechtecke und Maschinenbelegung (Habilitationsschrift. Technische Universität Otto-von-Guericke Magdeburg, 1990).

[2] H. Bräsel, Matrices in Shop Scheduling Problems, in: M. Morlock, C. Schwindt, N. Trautmann and J. Zimmermann, eds, Perspectives on Operations Research - Essays in Honor of Klaus Neumann (Gabler Edition Wissenschaft, Deutscher Universitätsverlag, 2006), 17-43.

[3] H. Bräsel, M. Harborth, T. Tautenhahn and P. Willenius, On the set of solutions of an open shop Problem, Ann. Oper. Res. 92 (1999) 241-263, doi: 10.1023/A:1018938915709.

[4] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, in: S. Tison ed., Trees in Algebra and Programming, CAAP '94, 19th International Colloquium 787 of Lecture Notes in Computer Science (Springer Verlag, 1994) 68-82.

[5] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66, doi: 10.1007/BF02020961.

[6] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16 (1964) 539-548, doi: 10.4153/CJM-1964-055-5.

[7] M.C. Golumbic, Comparability graphs and a new matroid, J. Combin. Theory (B) 22 (1977) 68-90, doi: 10.1016/0095-8956(77)90049-1.

[8] M.C. Golumbic, The complexity of comparability graph recognition and coloring, Comp. 18 (1977) 199-208, doi: 10.1007/BF02253207.

[9] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).

[10] R.M. McConnell and J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, in: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms 5 (1994) 536-545.

[11] R.M. McConnell and J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999) 189-241, doi: 10.1016/S0012-365X(98)00319-7.

[12] R.M. McConnell and J.P. Spinrad, Ordered vertex partitioning, Discrete Math. and Theor. Comp. Sci. 4 (2000) 45-60.

[13] M. Moerig, Modulare Dekomposition durch geordnete Partitionierung der Knotenmenge: Grundlagen und Implementierung, (Diplomarbeit, Otto-von-Guericke-Universität Magdeburg, 2006).

[14] A. Natanzon, R. Shamir and R. Sharan, Complexity classification of some edge modification problems, Discrete Appl. Math. 113 (2001) 109-128, doi: 10.1016/S0166-218X(00)00391-7.

[15] K. Simon, Effiziente Algorithmen für perfekte Graphen (Teubner, 1992).

[16] P. Willenius, Irreduzibilitätstheorie bei Shop-Scheduling-Problemen (Dissertationsschrift, Shaker Verlag, 2000).

[17] M. Yannakakis, Edge deletion problems, SIAM J. Comput. 10 (2) (1981) 297-309, doi: 10.1137/0210021.