Directed hypergraphs: a tool for researching digraphs and hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 313-335.

Voir la notice de l'article provenant de la source Library of Science

In this paper we introduce the concept of directed hypergraph. It is a generalisation of the concept of digraph and is closely related with hypergraphs. The basic idea is to take a hypergraph, partition its edges non-trivially (when possible), and give a total order to such partitions. The elements of these partitions are called levels. In order to preserve the structure of the underlying hypergraph, we ask that only vertices which belong to exactly the same edges may be in the same level of any edge they belong to. Some little adjustments are needed to avoid directed walks within a single edge of the underlying hypergraph, and to deal with isolated vertices.
Keywords: hypergraph, strongly independent set, transversal set, kernel
@article{DMGT_2009_29_2_a7,
     author = {Galeana-S\'anchez, Hortensia and Manrique, Mart{\'\i}n},
     title = {Directed hypergraphs: a tool for researching digraphs and hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {313--335},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a7/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Manrique, Martín
TI  - Directed hypergraphs: a tool for researching digraphs and hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 313
EP  - 335
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a7/
LA  - en
ID  - DMGT_2009_29_2_a7
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Manrique, Martín
%T Directed hypergraphs: a tool for researching digraphs and hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 313-335
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a7/
%G en
%F DMGT_2009_29_2_a7
Galeana-Sánchez, Hortensia; Manrique, Martín. Directed hypergraphs: a tool for researching digraphs and hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 313-335. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a7/

[1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications (Springer-Verlag London, London, UK, 2001).

[2] C. Berge, The Theory of Graphs (Dover Publications, New York, USA, 2001).

[3] C. Berge, Hypergraphs. Combinatorics of Finite Sets (Elsevier Science Publishers, Amsterdam, Holland, 1989).

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (MacMillan Press, London, UK, 1976).

[5] M. Borowiecki, Connected Bijection Method in Hypergraph Theory and Some Results Concerning the Structure of Graphs and Hypergraphs (Wydawnictwo Uczelniane, Zielona Góra, Poland, 1979).

[6] G. Chartrand and L. Lesniak, Graphs and Digraphs (Wadsworth Inc, Belmont, USA, 1986).

[7] P. Duchet, Graphes noyau-parfaites, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.

[8] P. Duchet and H. Meyniel, A Note on Kernel-critical Graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.

[9] H. Galeana-Sánchez and V. Neumann-Lara, On Kernels and Semikernels of Digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.

[10] H. Galeana-Sánchez and V. Neumann-Lara, On Kernel-imperfect Critical Digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.

[11] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs (Marcel Dekker Inc. New York, USA, 1998).

[12] V. Neumann-Lara, Seminúcleos de una digráfica, An. Inst. Mat. UNAM, México, II (1984) 67-76.

[13] M. Richardson, Solutions of Irreflexive Relations, Ann. Math. USA 58 (1953) p. 573, doi: 10.2307/1969755.

[14] M. Richardson, Extension Theorems for Solutions of Irreflexive Relations, Proc. Math. Acad. Sci. USA 39 (1953) p. 649, doi: 10.1073/pnas.39.7.649.