Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_2_a6, author = {Fouquet, Jean-Luc and Vanherpe, Jean-Marie}, title = {On normal partitions in cubic graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {293--312}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a6/} }
Fouquet, Jean-Luc; Vanherpe, Jean-Marie. On normal partitions in cubic graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 293-312. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a6/
[1] J.A. Bondy, Basic graph theory: Paths and circuits, in: M. Grötschel, R.L. Graham and L. Lovász, eds, Handbook of Combinatorics, vol. 1, pages 3-112 (Elsevier, North-Holland, 1995).
[2] A. Bouchet and J.L. Fouquet, Trois types de décompositions d'un graphe chaînes, Annals of Discrete Math. 17 (1983) 131-141.
[3] G. Fan and A. Raspaud, Fulkerson's conjecture and circuit covers, J. Combin. Theory (B) 61 (1994) 133-138, doi: 10.1006/jctb.1994.1039.
[4] L. Goddyn, Cones, lattices and Hilbert base of circuits and perfect matching, in: N. Robertson and P. Seymour, eds, Graph Structure Theory, Contemporary Mathematics Volume 147, pages 419-439 (American Mathematical Society, 1993), doi: 10.1090/conm/147/01189.
[5] R. Halin, A theorem on n-connected graphs, J. Combin. Theory (1969) 150-154.
[6] J.M. Vanherpe, J.L. Fouquet, H. Thuillier and A.P. Wojda, On odd and semi-odd linear partitions of cubic graphs, preprint, 2006.
[7] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453-465, doi: 10.1007/BF01456961.
[8] A. Kotzig, Moves without forbidden transitions, Mat.-Fyz. Casopis 18 (1968) 76-80, MR 39#4038.
[9] H. Li, Perfect path double covers in every simple graphs, J. Graph. Theory 14 (1990) 645-650, MR 91h#05052.
[10] P. Seymour, On multi-colourings of cubic graphs and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. (3) 38 (1979) 423-460, doi: 10.1112/plms/s3-38.3.423.