On normal partitions in cubic graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 293-312.

Voir la notice de l'article provenant de la source Library of Science

A normal partition of the edges of a cubic graph is a partition into trails (no repeated edge) such that each vertex is the end vertex of exactly one trail of the partition. We investigate this notion and give some results and problems.
Keywords: cubic graph, edge-partition
@article{DMGT_2009_29_2_a6,
     author = {Fouquet, Jean-Luc and Vanherpe, Jean-Marie},
     title = {On normal partitions in cubic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {293--312},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a6/}
}
TY  - JOUR
AU  - Fouquet, Jean-Luc
AU  - Vanherpe, Jean-Marie
TI  - On normal partitions in cubic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 293
EP  - 312
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a6/
LA  - en
ID  - DMGT_2009_29_2_a6
ER  - 
%0 Journal Article
%A Fouquet, Jean-Luc
%A Vanherpe, Jean-Marie
%T On normal partitions in cubic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 293-312
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a6/
%G en
%F DMGT_2009_29_2_a6
Fouquet, Jean-Luc; Vanherpe, Jean-Marie. On normal partitions in cubic graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 293-312. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a6/

[1] J.A. Bondy, Basic graph theory: Paths and circuits, in: M. Grötschel, R.L. Graham and L. Lovász, eds, Handbook of Combinatorics, vol. 1, pages 3-112 (Elsevier, North-Holland, 1995).

[2] A. Bouchet and J.L. Fouquet, Trois types de décompositions d'un graphe chaînes, Annals of Discrete Math. 17 (1983) 131-141.

[3] G. Fan and A. Raspaud, Fulkerson's conjecture and circuit covers, J. Combin. Theory (B) 61 (1994) 133-138, doi: 10.1006/jctb.1994.1039.

[4] L. Goddyn, Cones, lattices and Hilbert base of circuits and perfect matching, in: N. Robertson and P. Seymour, eds, Graph Structure Theory, Contemporary Mathematics Volume 147, pages 419-439 (American Mathematical Society, 1993), doi: 10.1090/conm/147/01189.

[5] R. Halin, A theorem on n-connected graphs, J. Combin. Theory (1969) 150-154.

[6] J.M. Vanherpe, J.L. Fouquet, H. Thuillier and A.P. Wojda, On odd and semi-odd linear partitions of cubic graphs, preprint, 2006.

[7] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453-465, doi: 10.1007/BF01456961.

[8] A. Kotzig, Moves without forbidden transitions, Mat.-Fyz. Casopis 18 (1968) 76-80, MR 39#4038.

[9] H. Li, Perfect path double covers in every simple graphs, J. Graph. Theory 14 (1990) 645-650, MR 91h#05052.

[10] P. Seymour, On multi-colourings of cubic graphs and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. (3) 38 (1979) 423-460, doi: 10.1112/plms/s3-38.3.423.