On odd and semi-odd linear partitions of cubic graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 275-292.

Voir la notice de l'article provenant de la source Library of Science

A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition.
Keywords: Cubic graph, linear arboricity, strong matching, edge-colouring
@article{DMGT_2009_29_2_a5,
     author = {Fouquet, Jean-Luc and Thuillier, Henri and Vanherpe, Jean-Marie and Wojda, Adam},
     title = {On odd and semi-odd linear partitions of cubic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {275--292},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a5/}
}
TY  - JOUR
AU  - Fouquet, Jean-Luc
AU  - Thuillier, Henri
AU  - Vanherpe, Jean-Marie
AU  - Wojda, Adam
TI  - On odd and semi-odd linear partitions of cubic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 275
EP  - 292
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a5/
LA  - en
ID  - DMGT_2009_29_2_a5
ER  - 
%0 Journal Article
%A Fouquet, Jean-Luc
%A Thuillier, Henri
%A Vanherpe, Jean-Marie
%A Wojda, Adam
%T On odd and semi-odd linear partitions of cubic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 275-292
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a5/
%G en
%F DMGT_2009_29_2_a5
Fouquet, Jean-Luc; Thuillier, Henri; Vanherpe, Jean-Marie; Wojda, Adam. On odd and semi-odd linear partitions of cubic graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 275-292. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a5/

[1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III, Cyclic and Acyclic Invariant, Math. Slovaca 30 (1980) 405-417.

[2] R.E.L. Aldred and N.C. Wormald, More on the linear k-arboricity of regular graphs, Australas. J. Combin. 18 (1998) 97-104.

[3] J.C. Bermond, J.L. Fouquet, M. Habib and B. Peroche, On linear k-arboricity, Discrete Math. 52 (1984) 123-132, doi: 10.1016/0012-365X(84)90075-X.

[4] J.A. Bondy, Balanced colourings and the four color conjecture, Proc. Am. Math. Soc. 33 (1972) 241-244, doi: 10.1090/S0002-9939-1972-0294173-4.

[5] M. Habib and B. Peroche, La k-arboricité linéaire des arbres, Annals of Discrete Math. 17 (1983) 307-317.

[6] F. Harary, Covering and Packing in graphs I, Ann. New York Acad. Sci. 175 (1970) 198-205, doi: 10.1111/j.1749-6632.1970.tb56470.x.

[7] I. Holyer, The NP-completeness of edge coloring, SIAM J. Comput. 10 (1981) 718-720, doi: 10.1137/0210055.

[8] F. Jaeger, Etude de quelques invariants et problèmes d'existence en théorie des graphes, Thèse d'Etat, IMAG Grenoble, 1976. Proc 10th Ann. Symp. on Theory of Computing (1978) 216-226.

[9] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theory (B) 75 (1999) 100-109, doi: 10.1006/jctb.1998.1868.

[10] V.G. Vizing, On an estimate of the chromatic class of p-graph, Diskrete Analiz 3 (1964) 25-30.