Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_2_a5, author = {Fouquet, Jean-Luc and Thuillier, Henri and Vanherpe, Jean-Marie and Wojda, Adam}, title = {On odd and semi-odd linear partitions of cubic graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {275--292}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a5/} }
TY - JOUR AU - Fouquet, Jean-Luc AU - Thuillier, Henri AU - Vanherpe, Jean-Marie AU - Wojda, Adam TI - On odd and semi-odd linear partitions of cubic graphs JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 275 EP - 292 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a5/ LA - en ID - DMGT_2009_29_2_a5 ER -
%0 Journal Article %A Fouquet, Jean-Luc %A Thuillier, Henri %A Vanherpe, Jean-Marie %A Wojda, Adam %T On odd and semi-odd linear partitions of cubic graphs %J Discussiones Mathematicae. Graph Theory %D 2009 %P 275-292 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a5/ %G en %F DMGT_2009_29_2_a5
Fouquet, Jean-Luc; Thuillier, Henri; Vanherpe, Jean-Marie; Wojda, Adam. On odd and semi-odd linear partitions of cubic graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 275-292. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a5/
[1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III, Cyclic and Acyclic Invariant, Math. Slovaca 30 (1980) 405-417.
[2] R.E.L. Aldred and N.C. Wormald, More on the linear k-arboricity of regular graphs, Australas. J. Combin. 18 (1998) 97-104.
[3] J.C. Bermond, J.L. Fouquet, M. Habib and B. Peroche, On linear k-arboricity, Discrete Math. 52 (1984) 123-132, doi: 10.1016/0012-365X(84)90075-X.
[4] J.A. Bondy, Balanced colourings and the four color conjecture, Proc. Am. Math. Soc. 33 (1972) 241-244, doi: 10.1090/S0002-9939-1972-0294173-4.
[5] M. Habib and B. Peroche, La k-arboricité linéaire des arbres, Annals of Discrete Math. 17 (1983) 307-317.
[6] F. Harary, Covering and Packing in graphs I, Ann. New York Acad. Sci. 175 (1970) 198-205, doi: 10.1111/j.1749-6632.1970.tb56470.x.
[7] I. Holyer, The NP-completeness of edge coloring, SIAM J. Comput. 10 (1981) 718-720, doi: 10.1137/0210055.
[8] F. Jaeger, Etude de quelques invariants et problèmes d'existence en théorie des graphes, Thèse d'Etat, IMAG Grenoble, 1976. Proc 10th Ann. Symp. on Theory of Computing (1978) 216-226.
[9] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theory (B) 75 (1999) 100-109, doi: 10.1006/jctb.1998.1868.
[10] V.G. Vizing, On an estimate of the chromatic class of p-graph, Diskrete Analiz 3 (1964) 25-30.