Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_2_a4, author = {Drgas-Burchardt, Ewa}, title = {Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {263--274}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a4/} }
TY - JOUR AU - Drgas-Burchardt, Ewa TI - Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 263 EP - 274 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a4/ LA - en ID - DMGT_2009_29_2_a4 ER -
%0 Journal Article %A Drgas-Burchardt, Ewa %T Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties %J Discussiones Mathematicae. Graph Theory %D 2009 %P 263-274 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a4/ %G en %F DMGT_2009_29_2_a4
Drgas-Burchardt, Ewa. Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 263-274. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a4/
[1] A.J. Berger, Minimal forbidden subgraphs of reducible graph properties, Discuss. Math. Graph Theory 21 (2001) 111-117, doi: 10.7151/dmgt.1136.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1981).
[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishawa International Publication, Gulbarga, 1991) 41-68.
[4] M. Borowiecki, I. Broere, M. Frick, P.Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[5] E.J. Cockayne, Colour classes for r-graphs, Canad. Math. Bull. 15 (1972) 349-354, doi: 10.4153/CMB-1972-063-2.
[6] E. Drgas-Burchardt, On uniqueness of a general factorization of graph properties, submitted.
[7] E. Drgas-Burchardt, A note on joins of additive hereditary graph properties, Discuss. Math. Graph Theory 26 (2006) 413-418, doi: 10.7151/dmgt.1333.
[8] M. Frick, A survey of (m,k)-colorings, in: J. Gimbel et al. (Eds), Quo Vadis Graph Theory? A source book for challenges and directions, Annals Discrete Math. 55 (North-Holland, Amsterdam, 1993) 45-57, doi: 10.1016/S0167-5060(08)70374-1.
[9] D.L. Greenwell, R.L. Hemminger and J. Klerlein, Forbidden subgraphs, in: Proceedings of the 4th S-E Conf. Combinatorics, Graph Theory and Computing (Utilitas Math., Winnipeg, Man., 1973) 389-394.
[10] G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. 2 (1952) 326-336, doi: 10.1112/plms/s3-2.1.326.
[11] J. Jakubik, On the Lattice of Additive Hereditary Properties of Finite Graphs, Discuss. Math. General Algebra and Applications 22 (2002) 73-86.
[12] M. Katchalski, W. McCuaig and S. Seager, Ordered colourings, Discrete Math. 142 (1995) 141-154, doi: 10.1016/0012-365X(93)E0216-Q.
[13] N. Robertson and P.D. Seymour, Graph minors - a survey, in: Surveys in Combinatorics 1985 (Glasgow, 1985), London Math. Soc. Lecture Note Ser. 103 (Cambridge University Press., Cambridge 1985), 153-171.