Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 263-274

Voir la notice de l'article provenant de la source Library of Science

An additive hereditary graph property is any class of simple graphs, which is closed under isomorphisms unions and taking subgraphs. Let L^a denote a class of all such properties. In the paper, we consider H-reducible over L^a properties with H being a fixed graph. The finiteness of the sets of all minimal forbidden graphs is analyzed for such properties.
Keywords: hereditary graph property, lattice of additive hereditary graph properties, minimal forbidden graph family, join in the lattice, reducibility
@article{DMGT_2009_29_2_a4,
     author = {Drgas-Burchardt, Ewa},
     title = {Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {263--274},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a4/}
}
TY  - JOUR
AU  - Drgas-Burchardt, Ewa
TI  - Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 263
EP  - 274
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a4/
LA  - en
ID  - DMGT_2009_29_2_a4
ER  - 
%0 Journal Article
%A Drgas-Burchardt, Ewa
%T Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 263-274
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a4/
%G en
%F DMGT_2009_29_2_a4
Drgas-Burchardt, Ewa. Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 263-274. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a4/