Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_2_a2, author = {Bucko, Jozef and Mih\'ok, Peter}, title = {On infinite uniquely partitionable graphs and graph properties of finite character}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {241--251}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a2/} }
TY - JOUR AU - Bucko, Jozef AU - Mihók, Peter TI - On infinite uniquely partitionable graphs and graph properties of finite character JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 241 EP - 251 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a2/ LA - en ID - DMGT_2009_29_2_a2 ER -
%0 Journal Article %A Bucko, Jozef %A Mihók, Peter %T On infinite uniquely partitionable graphs and graph properties of finite character %J Discussiones Mathematicae. Graph Theory %D 2009 %P 241-251 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a2/ %G en %F DMGT_2009_29_2_a2
Bucko, Jozef; Mihók, Peter. On infinite uniquely partitionable graphs and graph properties of finite character. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 241-251. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a2/
[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary graph properties, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[2] I. Broere and J. Bucko, Divisibility in additive hereditary graph properties and uniquely partitionable graphs, Tatra Mt. Math. Publ. 18 (1999) 79-87.
[3] I. Broere, J. Bucko and P. Mihók, Criteria for the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties, Discuss. Math. Graph Theory 22 (2002) 31-37, doi: 10.7151/dmgt.1156.
[4] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103-114, doi: 10.7151/dmgt.1043.
[5] G. Cherlin, S. Shelah and N. Shi, Universal graphs with forbidden subgraphs and algebraic closure, Advances in Appl. Math. 22 (1999) 454-491, doi: 10.1006/aama.1998.0641.
[6] R. Cowen, S.H. Hechler and P. Mihók, Graph coloring compactness theorems equivalent to BPI, Scientia Math. Japonicae 56 (2002) 171-180.
[7] A. Farrugia, P. Mihók, R.B. Richter and G. Semanišin, Factorizations and characterizations of induced-hereditary and compositive properties, J. Graph Theory 49 (2005) 11-27, doi: 10.1002/jgt.20062.
[8] B. Ganter and R. Wille, Formal Concept Analysis - Mathematical Foundation (Springer-Verlag Berlin Heidelberg, 1999), doi: 10.1007/978-3-642-59830-2.
[9] R.L. Graham, M. Grotschel and L. Lovasz, Handbook of Combinatorics (Elsevier Science B.V., Amsterdam, 1995).
[10] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colourable graphs, J. Combin. Theory 6 (1969) 264-270, doi: 10.1016/S0021-9800(69)80086-4.
[11] W. Imrich, P. Mihók and G. Semanišin, A note on the unique factorization theorem for properties of infinite graphs, Stud. Univ. Zilina, Math. Ser. 16 (2003) 51-54.
[12] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58.
[13] P. Mihók, Unique factorization theorem, Discuss. Math. Graph Theory 20 (2000) 143-154, doi: 10.7151/dmgt.1114.
[14] P. Mihók, On the lattice of additive hereditary properties of object systems, Tatra Mt. Math. Publ. 30 (2005) 155-161.
[15] P. Mihók and G. Semanišin, Unique Factorization Theorem and Formal Concept Analysis, CLA 2006, Yasmin, Hammamet, Tunisia, (2006), 195-203.
[16] N.W. Sauer, Canonical vertex partitions, Combinatorics, Probability and Computing 12 (2003) 671-704, doi: 10.1017/S0963548303005765.
[17] E.R. Scheinerman, On the structure of hereditary classes of graphs, J. Graph Theory 10 (1986) 545-551, doi: 10.1002/jgt.3190100414.