On universal graphs for hom-properties
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 401-409
Voir la notice de l'article provenant de la source Library of Science
A graph property is any isomorphism closed class of simple graphs. For a simple finite graph H, let → H denote the class of all simple countable graphs that admit homomorphisms to H, such classes of graphs are called hom-properties. Given a graph property , a graph G ∈ is universal in if each member of is isomorphic to an induced subgraph of G. In particular, we consider universal graphs in → H and we give a new proof of the existence of a universal graph in → H, for any finite graph H.
Keywords:
universal graph, weakly universal graph, hom-property, core
@article{DMGT_2009_29_2_a13,
author = {Mih\'ok, Peter and Mi\v{s}kuf, Jozef and Semani\v{s}in, Gabriel},
title = {On universal graphs for hom-properties},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {401--409},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a13/}
}
TY - JOUR AU - Mihók, Peter AU - Miškuf, Jozef AU - Semanišin, Gabriel TI - On universal graphs for hom-properties JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 401 EP - 409 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a13/ LA - en ID - DMGT_2009_29_2_a13 ER -
Mihók, Peter; Miškuf, Jozef; Semanišin, Gabriel. On universal graphs for hom-properties. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 401-409. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a13/