On local structure of 1-planar graphs of minimum degree 5 and girth 4
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 385-400

Voir la notice de l'article provenant de la source Library of Science

A graph is 1-planar if it can be embedded in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree 5 and girth 4 contains
Keywords: light graph, 1-planar graph, star, cycle
@article{DMGT_2009_29_2_a12,
     author = {Hud\'ak, D\'avid and Madaras, Tom\'as},
     title = {On local structure of 1-planar graphs of minimum degree 5 and girth 4},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {385--400},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a12/}
}
TY  - JOUR
AU  - Hudák, Dávid
AU  - Madaras, Tomás
TI  - On local structure of 1-planar graphs of minimum degree 5 and girth 4
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 385
EP  - 400
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a12/
LA  - en
ID  - DMGT_2009_29_2_a12
ER  - 
%0 Journal Article
%A Hudák, Dávid
%A Madaras, Tomás
%T On local structure of 1-planar graphs of minimum degree 5 and girth 4
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 385-400
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a12/
%G en
%F DMGT_2009_29_2_a12
Hudák, Dávid; Madaras, Tomás. On local structure of 1-planar graphs of minimum degree 5 and girth 4. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 385-400. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a12/