On local structure of 1-planar graphs of minimum degree 5 and girth 4
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 385-400
Voir la notice de l'article provenant de la source Library of Science
A graph is 1-planar if it can be embedded in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree 5 and girth 4 contains
Keywords:
light graph, 1-planar graph, star, cycle
@article{DMGT_2009_29_2_a12,
author = {Hud\'ak, D\'avid and Madaras, Tom\'as},
title = {On local structure of 1-planar graphs of minimum degree 5 and girth 4},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {385--400},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a12/}
}
TY - JOUR AU - Hudák, Dávid AU - Madaras, Tomás TI - On local structure of 1-planar graphs of minimum degree 5 and girth 4 JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 385 EP - 400 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a12/ LA - en ID - DMGT_2009_29_2_a12 ER -
Hudák, Dávid; Madaras, Tomás. On local structure of 1-planar graphs of minimum degree 5 and girth 4. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 385-400. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a12/