Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_2_a10, author = {Giaro, Krzysztof and Kubale, Marek}, title = {Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {361--376}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a10/} }
TY - JOUR AU - Giaro, Krzysztof AU - Kubale, Marek TI - Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 361 EP - 376 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a10/ LA - en ID - DMGT_2009_29_2_a10 ER -
%0 Journal Article %A Giaro, Krzysztof %A Kubale, Marek %T Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs %J Discussiones Mathematicae. Graph Theory %D 2009 %P 361-376 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a10/ %G en %F DMGT_2009_29_2_a10
Giaro, Krzysztof; Kubale, Marek. Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 361-376. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a10/
[1] K. Giaro and M. Kubale, Edge-chromatic sum of trees and bounded cyclicity graphs, Inf. Process. Lett. 75 (2000) 65-69, doi: 10.1016/S0020-0190(00)00072-7.
[2] K. Giaro, M. Kubale and P. Obszarski, A graph coloring approach to scheduling multiprocessor tasks on dedicated machines with availability constraints, Disc. Appl. Math., (to appear).
[3] S. Isobe, X. Zhou and T. Nishizeki, Cost total colorings of trees, IEICE Trans. Inf. and Syst. E-87 (2004) 337-342.
[4] J. Jansen, Approximation results for optimum cost chromatic partition problem, J. Alghoritms 34 (2000) 54-89, doi: 10.1006/jagm.1999.1022.
[5] M. Kao, T. Lam, W. Sung and H. Ting, All-cavity maximum matchings, Proc. ISAAC'97, LNCS 1350 (1997) 364-373.
[6] L. Kroon, A. Sen. H. Deng and A. Roy, The optimal cost chromatic partition problem for trees and interval graphs, Proc. WGTCCS'96, LNCS 1197 (1997) 279-292.
[7] D. Marx, The complexity of tree multicolorings, Proc. MFCS'02, LNCS 2420 (2002) 532-542.
[8] D. Marx, List edge muticoloring in graphs with few cycles, Inf. Proc. Lett. 89 (2004) 85-90, doi: 10.1016/j.ipl.2003.09.016.
[9] S. Micali and V. Vazirani, An $O(mn^{1/2})$ algorithm for finding maximum matching in general graphs, Proc. 21st Ann. IEEE Symp. on Foundations of Computer Science (1980) 17-27.
[10] K. Mulmuley, U. Vazirani and V. Vazirani, Matching is as easy as matrix inversion, Combinatorica 7 (1987) 105-113, doi: 10.1007/BF02579206.
[11] T. Szkaliczki, Routing with minimum wire length in the dogleg-free Manhattan model is NP-complete, SIAM J. Computing 29 (1999) 274-287, doi: 10.1137/S0097539796303123.
[12] X. Zhou and T. Nishizeki, Algorithms for the cost edge-coloring of trees, LNCS 2108 (2001) 288-297.