Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 361-376.

Voir la notice de l'article provenant de la source Library of Science

We consider a list cost coloring of vertices and edges in the model of vertex, edge, total and pseudototal coloring of graphs. We use a dynamic programming approach to derive polynomial-time algorithms for solving the above problems for trees. Then we generalize this approach to arbitrary graphs with bounded cyclomatic numbers and to their multicolorings.
Keywords: cost coloring, dynamic programming, list coloring, NP-completeness, polynomial-time algorithm
@article{DMGT_2009_29_2_a10,
     author = {Giaro, Krzysztof and Kubale, Marek},
     title = {Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {361--376},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a10/}
}
TY  - JOUR
AU  - Giaro, Krzysztof
AU  - Kubale, Marek
TI  - Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 361
EP  - 376
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a10/
LA  - en
ID  - DMGT_2009_29_2_a10
ER  - 
%0 Journal Article
%A Giaro, Krzysztof
%A Kubale, Marek
%T Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 361-376
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a10/
%G en
%F DMGT_2009_29_2_a10
Giaro, Krzysztof; Kubale, Marek. Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 361-376. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a10/

[1] K. Giaro and M. Kubale, Edge-chromatic sum of trees and bounded cyclicity graphs, Inf. Process. Lett. 75 (2000) 65-69, doi: 10.1016/S0020-0190(00)00072-7.

[2] K. Giaro, M. Kubale and P. Obszarski, A graph coloring approach to scheduling multiprocessor tasks on dedicated machines with availability constraints, Disc. Appl. Math., (to appear).

[3] S. Isobe, X. Zhou and T. Nishizeki, Cost total colorings of trees, IEICE Trans. Inf. and Syst. E-87 (2004) 337-342.

[4] J. Jansen, Approximation results for optimum cost chromatic partition problem, J. Alghoritms 34 (2000) 54-89, doi: 10.1006/jagm.1999.1022.

[5] M. Kao, T. Lam, W. Sung and H. Ting, All-cavity maximum matchings, Proc. ISAAC'97, LNCS 1350 (1997) 364-373.

[6] L. Kroon, A. Sen. H. Deng and A. Roy, The optimal cost chromatic partition problem for trees and interval graphs, Proc. WGTCCS'96, LNCS 1197 (1997) 279-292.

[7] D. Marx, The complexity of tree multicolorings, Proc. MFCS'02, LNCS 2420 (2002) 532-542.

[8] D. Marx, List edge muticoloring in graphs with few cycles, Inf. Proc. Lett. 89 (2004) 85-90, doi: 10.1016/j.ipl.2003.09.016.

[9] S. Micali and V. Vazirani, An $O(mn^{1/2})$ algorithm for finding maximum matching in general graphs, Proc. 21st Ann. IEEE Symp. on Foundations of Computer Science (1980) 17-27.

[10] K. Mulmuley, U. Vazirani and V. Vazirani, Matching is as easy as matrix inversion, Combinatorica 7 (1987) 105-113, doi: 10.1007/BF02579206.

[11] T. Szkaliczki, Routing with minimum wire length in the dogleg-free Manhattan model is NP-complete, SIAM J. Computing 29 (1999) 274-287, doi: 10.1137/S0097539796303123.

[12] X. Zhou and T. Nishizeki, Algorithms for the cost edge-coloring of trees, LNCS 2108 (2001) 288-297.