Acyclic reducible bounds for outerplanar graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 219-239.

Voir la notice de l'article provenant de la source Library of Science

For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions:
Keywords: graph, acyclic colouring, additive hereditary class, outerplanar graph
@article{DMGT_2009_29_2_a1,
     author = {Borowiecki, Mieczys{\l}aw and Fiedorowicz, Anna and Ha{\l}uszczak, Mariusz},
     title = {Acyclic reducible bounds for outerplanar graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {219--239},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a1/}
}
TY  - JOUR
AU  - Borowiecki, Mieczysław
AU  - Fiedorowicz, Anna
AU  - Hałuszczak, Mariusz
TI  - Acyclic reducible bounds for outerplanar graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 219
EP  - 239
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a1/
LA  - en
ID  - DMGT_2009_29_2_a1
ER  - 
%0 Journal Article
%A Borowiecki, Mieczysław
%A Fiedorowicz, Anna
%A Hałuszczak, Mariusz
%T Acyclic reducible bounds for outerplanar graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 219-239
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a1/
%G en
%F DMGT_2009_29_2_a1
Borowiecki, Mieczysław; Fiedorowicz, Anna; Hałuszczak, Mariusz. Acyclic reducible bounds for outerplanar graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 219-239. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a1/

[1] P. Boiron, E. Sopena and L. Vignal, Acyclic improper colorings of graphs, J. Graph Theory 32 (1999) 97-107, doi: 10.1002/(SICI)1097-0118(199909)32:197::AID-JGT9>3.0.CO;2-O

[2] P. Boiron, E. Sopena and L. Vignal, Acyclic improper colourings of graphs with bounded degree, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 49 (1999) 1-9.

[3] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[4] M. Borowiecki and A. Fiedorowicz, On partitions of hereditary properties of graphs, Discuss. Math. Graph Theory 26 (2006) 377-387, doi: 10.7151/dmgt.1330.

[5] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236, doi: 10.1016/0012-365X(79)90077-3.

[6] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Acyclic colorings of planar graphs with large girth, J. London Math. Soc. 60 (1999) 344-352, doi: 10.1112/S0024610799007942.

[7] M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobsc. Akad. Nauk Gruzin SSR 93 (1979) 21-24 (in Russian).

[8] R. Diestel, Graph Theory (Springer, Berlin, 1997).

[9] B. Grunbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973) 390-412, doi: 10.1007/BF02764716.

[10] D.B. West, Introduction to Graph Theory, 2nd ed. (Prentice Hall, Upper Saddle River, 2001).