Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_2_a1, author = {Borowiecki, Mieczys{\l}aw and Fiedorowicz, Anna and Ha{\l}uszczak, Mariusz}, title = {Acyclic reducible bounds for outerplanar graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {219--239}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a1/} }
TY - JOUR AU - Borowiecki, Mieczysław AU - Fiedorowicz, Anna AU - Hałuszczak, Mariusz TI - Acyclic reducible bounds for outerplanar graphs JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 219 EP - 239 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a1/ LA - en ID - DMGT_2009_29_2_a1 ER -
%0 Journal Article %A Borowiecki, Mieczysław %A Fiedorowicz, Anna %A Hałuszczak, Mariusz %T Acyclic reducible bounds for outerplanar graphs %J Discussiones Mathematicae. Graph Theory %D 2009 %P 219-239 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a1/ %G en %F DMGT_2009_29_2_a1
Borowiecki, Mieczysław; Fiedorowicz, Anna; Hałuszczak, Mariusz. Acyclic reducible bounds for outerplanar graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 219-239. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a1/
[1] P. Boiron, E. Sopena and L. Vignal, Acyclic improper colorings of graphs, J. Graph Theory 32 (1999) 97-107, doi: 10.1002/(SICI)1097-0118(199909)32:197::AID-JGT9>3.0.CO;2-O
[2] P. Boiron, E. Sopena and L. Vignal, Acyclic improper colourings of graphs with bounded degree, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 49 (1999) 1-9.
[3] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[4] M. Borowiecki and A. Fiedorowicz, On partitions of hereditary properties of graphs, Discuss. Math. Graph Theory 26 (2006) 377-387, doi: 10.7151/dmgt.1330.
[5] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236, doi: 10.1016/0012-365X(79)90077-3.
[6] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Acyclic colorings of planar graphs with large girth, J. London Math. Soc. 60 (1999) 344-352, doi: 10.1112/S0024610799007942.
[7] M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobsc. Akad. Nauk Gruzin SSR 93 (1979) 21-24 (in Russian).
[8] R. Diestel, Graph Theory (Springer, Berlin, 1997).
[9] B. Grunbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973) 390-412, doi: 10.1007/BF02764716.
[10] D.B. West, Introduction to Graph Theory, 2nd ed. (Prentice Hall, Upper Saddle River, 2001).