Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_1_a9, author = {Cranston, Daniel}, title = {Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {163--178}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a9/} }
TY - JOUR AU - Cranston, Daniel TI - Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 163 EP - 178 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a9/ LA - en ID - DMGT_2009_29_1_a9 ER -
Cranston, Daniel. Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 163-178. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a9/
[1] M. Behzad, Graphs and their chromatic numbers (Ph.D. thesis, Michigan State University, 1965).
[2] B. Bollabás and A.J. Harris, List-colorings of graphs, Graphs Combin. 1 (1985) 115-127, doi: 10.1007/BF02582936.
[3] O.V. Borodin, Generalization of a theorem of Kotzig and a prescribed coloring of the edges of planar graphs, Mathematical Notes of the Academy of Sciences of the USSR 48 (1990) 1186-1190, doi: 10.1007/BF01240258.
[4] O.V. Borodin, On the total coloring of planar graphs, J. reine angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180.
[5] O.V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory 21 (1996) 183-186, doi: 10.1002/(SICI)1097-0118(199602)21:2183::AID-JGT7>3.0.CO;2-N
[6] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Comb. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780.
[7] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Arcata, California, 1979), Congressus Numeratium 26 (1980) 125-157.
[8] R.P. Gupta, The chromatic index and the degree of a graph (Abstract 66T-429), Notices Amer. Math. Soc. 13 (1966) 719.
[9] T.R. Jensen and B. Toft, Graph Coloring Problems (John Wiley Sons, 1995).
[10] M. Juvan, B. Mohar and R. Skrekovski, Graphs of degree 4 are 5-edge-choosable, J. Graph Theory, 32 (1999) 250-264, doi: 10.1002/(SICI)1097-0118(199911)32:3250::AID-JGT5>3.0.CO;2-R
[11] A.V. Kostochka, List edge chromatic number of graphs with large girth, Discrete Math. 101 (1992) 189-201, doi: 10.1016/0012-365X(92)90602-C.
[12] A.V. Kostochka, The total coloring of a multigraph with maximal degree 4, Discrete Math. 17 (1977) 161-163, doi: 10.1016/0012-365X(77)90146-7.
[13] A.V. Kostochka, The total chromatic number of a multigraph with maximal degree 5 is at most 7, Discrete Math. 162 (1996) 199-214, doi: 10.1016/0012-365X(95)00286-6.
[14] A.V. Kostochka, Exact upper bound for the total chromatic number of a graph, Proc. 24th International Wiss. Koll., Tech. Hochsch. Ilmenau, (1979) 33-36 (in Russian).
[15] M. Rosenfeld, On the total coloring of certain graphs, Israel J. Math. 9 (1971) 396-402, doi: 10.1007/BF02771690.
[16] N. Vijayaditya, On total chromatic number of a graph, J. London Math. Soc. 3 (1971) 405-408, doi: 10.1112/jlms/s2-3.3.405.
[17] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).
[18] V.G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz., No. 29 Metody Diskret. Anal. v Teorii Kodov i Shem (1976), 3-10, 101 (in Russian).
[19] V.G. Vizing, Critical graphs with a given chromatic class., Diskret. Analiz. 5 (1965) 9-17 (in Russian).
[20] W. Wang and K. Lih, Choosability and edge choosability of planar graphs without intersecting triangles, SIAM J. Discrete Math. 15 (2002) 538-545, doi: 10.1137/S0895480100376253.
[21] H.P. Yap, Total-colourings of graphs, Manuscript, 1989.
[22] L. Zhang and B. Wu, Edge choosability of planar graphs without small cycles, Discrete Math. 283 (2004) 289-293, doi: 10.1016/j.disc.2004.01.001.