Restrained domination in unicyclic graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 71-86
Voir la notice de l'article provenant de la source Library of Science
Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The restrained domination number of G, denoted by γ_r(G), is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then γ_r(U) ≥ ⎡n/3⎤, and provide a characterization of graphs achieving this bound.
Keywords:
restrained domination, unicyclic graph
@article{DMGT_2009_29_1_a4,
author = {Hattingh, Johannes and Joubert, Ernst and Loizeaux, Marc and Plummer, Andrew and van der Merwe, Lucas},
title = {Restrained domination in unicyclic graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {71--86},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/}
}
TY - JOUR AU - Hattingh, Johannes AU - Joubert, Ernst AU - Loizeaux, Marc AU - Plummer, Andrew AU - van der Merwe, Lucas TI - Restrained domination in unicyclic graphs JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 71 EP - 86 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/ LA - en ID - DMGT_2009_29_1_a4 ER -
%0 Journal Article %A Hattingh, Johannes %A Joubert, Ernst %A Loizeaux, Marc %A Plummer, Andrew %A van der Merwe, Lucas %T Restrained domination in unicyclic graphs %J Discussiones Mathematicae. Graph Theory %D 2009 %P 71-86 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/ %G en %F DMGT_2009_29_1_a4
Hattingh, Johannes; Joubert, Ernst; Loizeaux, Marc; Plummer, Andrew; van der Merwe, Lucas. Restrained domination in unicyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 71-86. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/