Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_1_a4, author = {Hattingh, Johannes and Joubert, Ernst and Loizeaux, Marc and Plummer, Andrew and van der Merwe, Lucas}, title = {Restrained domination in unicyclic graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {71--86}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/} }
TY - JOUR AU - Hattingh, Johannes AU - Joubert, Ernst AU - Loizeaux, Marc AU - Plummer, Andrew AU - van der Merwe, Lucas TI - Restrained domination in unicyclic graphs JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 71 EP - 86 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/ LA - en ID - DMGT_2009_29_1_a4 ER -
%0 Journal Article %A Hattingh, Johannes %A Joubert, Ernst %A Loizeaux, Marc %A Plummer, Andrew %A van der Merwe, Lucas %T Restrained domination in unicyclic graphs %J Discussiones Mathematicae. Graph Theory %D 2009 %P 71-86 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/ %G en %F DMGT_2009_29_1_a4
Hattingh, Johannes; Joubert, Ernst; Loizeaux, Marc; Plummer, Andrew; van der Merwe, Lucas. Restrained domination in unicyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 71-86. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/
[1] G. Chartrand and L. Lesniak, Graphs Digraphs: Fourth Edition (Chapman Hall, Boca Raton, FL, 2005).
[2] P. Dankelmann, D. Day, J.H. Hattingh, M.A. Henning, L.R. Markus and H.C. Swart, On equality in an upper bound for the restrained and total domination numbers of a graph, to appear in Discrete Math.
[3] P. Dankelmann, J.H. Hattingh, M.A. Henning and H.C. Swart, Trees with equal domination and restrained domination numbers, J. Global Optim. 34 (2006) 597-607, doi: 10.1007/s10898-005-8565-z.
[4] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi and L.R. Markus, Restrained domination in trees, Discrete Math. 211 (2000) 1-9, doi: 10.1016/S0012-365X(99)00036-9.
[5] G.S. Domke, J.H. Hattingh, M.A. Henning and L.R. Markus, Restrained domination in graphs with minimum degree two, J. Combin. Math. Combin. Comput. 35 (2000) 239-254.
[6] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69, doi: 10.1016/S0012-365X(99)00016-3.
[7] J.H. Hattingh and M.A. Henning, Restrained domination excellent trees, Ars Combin. 87 (2008) 337-351.
[8] J.H. Hattingh, E. Jonck, E. J. Joubert and A.R. Plummer, Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs, Discrete Math. 308 (2008) 1080-1087, doi: 10.1016/j.disc.2007.03.061.
[9] J.H. Hattingh and A.R. Plummer, A note on restrained domination in trees, to appear in Ars Combin.
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1997).
[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1997).
[12] M.A. Henning, Graphs with large restrained domination number, Discrete Math. 197/198 (1999) 415-429, doi: 10.1016/S0012-365X(99)90095-X.
[13] B. Zelinka, Remarks on restrained and total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005) 393-396, doi: 10.1007/s10587-005-0029-6.