Restrained domination in unicyclic graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 71-86

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The restrained domination number of G, denoted by γ_r(G), is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then γ_r(U) ≥ ⎡n/3⎤, and provide a characterization of graphs achieving this bound.
Keywords: restrained domination, unicyclic graph
@article{DMGT_2009_29_1_a4,
     author = {Hattingh, Johannes and Joubert, Ernst and Loizeaux, Marc and Plummer, Andrew and van der Merwe, Lucas},
     title = {Restrained domination in unicyclic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {71--86},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/}
}
TY  - JOUR
AU  - Hattingh, Johannes
AU  - Joubert, Ernst
AU  - Loizeaux, Marc
AU  - Plummer, Andrew
AU  - van der Merwe, Lucas
TI  - Restrained domination in unicyclic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 71
EP  - 86
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/
LA  - en
ID  - DMGT_2009_29_1_a4
ER  - 
%0 Journal Article
%A Hattingh, Johannes
%A Joubert, Ernst
%A Loizeaux, Marc
%A Plummer, Andrew
%A van der Merwe, Lucas
%T Restrained domination in unicyclic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 71-86
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/
%G en
%F DMGT_2009_29_1_a4
Hattingh, Johannes; Joubert, Ernst; Loizeaux, Marc; Plummer, Andrew; van der Merwe, Lucas. Restrained domination in unicyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 71-86. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/