Restrained domination in unicyclic graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 71-86.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The restrained domination number of G, denoted by γ_r(G), is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then γ_r(U) ≥ ⎡n/3⎤, and provide a characterization of graphs achieving this bound.
Keywords: restrained domination, unicyclic graph
@article{DMGT_2009_29_1_a4,
     author = {Hattingh, Johannes and Joubert, Ernst and Loizeaux, Marc and Plummer, Andrew and van der Merwe, Lucas},
     title = {Restrained domination in unicyclic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {71--86},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/}
}
TY  - JOUR
AU  - Hattingh, Johannes
AU  - Joubert, Ernst
AU  - Loizeaux, Marc
AU  - Plummer, Andrew
AU  - van der Merwe, Lucas
TI  - Restrained domination in unicyclic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 71
EP  - 86
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/
LA  - en
ID  - DMGT_2009_29_1_a4
ER  - 
%0 Journal Article
%A Hattingh, Johannes
%A Joubert, Ernst
%A Loizeaux, Marc
%A Plummer, Andrew
%A van der Merwe, Lucas
%T Restrained domination in unicyclic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 71-86
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/
%G en
%F DMGT_2009_29_1_a4
Hattingh, Johannes; Joubert, Ernst; Loizeaux, Marc; Plummer, Andrew; van der Merwe, Lucas. Restrained domination in unicyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 71-86. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a4/

[1] G. Chartrand and L. Lesniak, Graphs Digraphs: Fourth Edition (Chapman Hall, Boca Raton, FL, 2005).

[2] P. Dankelmann, D. Day, J.H. Hattingh, M.A. Henning, L.R. Markus and H.C. Swart, On equality in an upper bound for the restrained and total domination numbers of a graph, to appear in Discrete Math.

[3] P. Dankelmann, J.H. Hattingh, M.A. Henning and H.C. Swart, Trees with equal domination and restrained domination numbers, J. Global Optim. 34 (2006) 597-607, doi: 10.1007/s10898-005-8565-z.

[4] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi and L.R. Markus, Restrained domination in trees, Discrete Math. 211 (2000) 1-9, doi: 10.1016/S0012-365X(99)00036-9.

[5] G.S. Domke, J.H. Hattingh, M.A. Henning and L.R. Markus, Restrained domination in graphs with minimum degree two, J. Combin. Math. Combin. Comput. 35 (2000) 239-254.

[6] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69, doi: 10.1016/S0012-365X(99)00016-3.

[7] J.H. Hattingh and M.A. Henning, Restrained domination excellent trees, Ars Combin. 87 (2008) 337-351.

[8] J.H. Hattingh, E. Jonck, E. J. Joubert and A.R. Plummer, Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs, Discrete Math. 308 (2008) 1080-1087, doi: 10.1016/j.disc.2007.03.061.

[9] J.H. Hattingh and A.R. Plummer, A note on restrained domination in trees, to appear in Ars Combin.

[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1997).

[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1997).

[12] M.A. Henning, Graphs with large restrained domination number, Discrete Math. 197/198 (1999) 415-429, doi: 10.1016/S0012-365X(99)90095-X.

[13] B. Zelinka, Remarks on restrained and total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005) 393-396, doi: 10.1007/s10587-005-0029-6.