Convex independence and the structure of clone-free multipartite tournaments
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 51-69.

Voir la notice de l'article provenant de la source Library of Science

We investigate the convex invariants associated with two-path convexity in clone-free multipartite tournaments. Specifically, we explore the relationship between the Helly number, Radon number and rank of such digraphs. The main result is a structural theorem that describes the arc relationships among certain vertices associated with vertices of a given convexly independent set. We use this to prove that the Helly number, Radon number, and rank coincide in any clone-free bipartite tournament. We then study the relationship between Helly independence and Radon independence in clone-free multipartite tournaments. We show that if the rank is at least 4 or the Helly number is at least 3, then the Helly number and the Radon number are equal.
Keywords: convex sets, rank, Helly number, Radon number, multipartite tournaments
@article{DMGT_2009_29_1_a3,
     author = {Parker, Darren and Westhoff, Randy and Wolf, Marty},
     title = {Convex independence and the structure of clone-free multipartite tournaments},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {51--69},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a3/}
}
TY  - JOUR
AU  - Parker, Darren
AU  - Westhoff, Randy
AU  - Wolf, Marty
TI  - Convex independence and the structure of clone-free multipartite tournaments
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 51
EP  - 69
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a3/
LA  - en
ID  - DMGT_2009_29_1_a3
ER  - 
%0 Journal Article
%A Parker, Darren
%A Westhoff, Randy
%A Wolf, Marty
%T Convex independence and the structure of clone-free multipartite tournaments
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 51-69
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a3/
%G en
%F DMGT_2009_29_1_a3
Parker, Darren; Westhoff, Randy; Wolf, Marty. Convex independence and the structure of clone-free multipartite tournaments. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 51-69. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a3/

[1] M. Changat and J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999) 91-95, doi: 10.1016/S0012-365X(98)00394-X.

[2] G. Chartrand and J.F. Fink and P. Zhang, Convexity in oriented graphs, Discrete Applied Math. 116 (2002) 115-126, doi: 10.1016/S0166-218X(00)00382-6.

[3] G. Chartrand and P. Zhang, Convex sets in graphs, Cong. Numer. 136 (1999) 19-32.

[4] P. Duchet, Convexity in graphs II. Minimal path convexity, J. Combin. Theory (B) 44 (1988) 307-316, doi: 10.1016/0095-8956(88)90039-1.

[5] P. Erdös, E. Fried, A. Hajnal and E.C. Milner, Some remarks on simple tournaments, Algebra Universalis 2 (1972) 238-245, doi: 10.1007/BF02945032.

[6] M.G. Everett and S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217-223, doi: 10.1016/0012-365X(85)90174-8.

[7] D.J. Haglin and M.J. Wolf, On convex subsets in tournaments, SIAM Journal on Discrete Mathematics 9 (1996) 63-70, doi: 10.1137/S0895480193251234.

[8] F. Harary and J. Nieminen, Convexity in graphs, J. Differential Geometry 16 (1981) 185-190.

[9] R.E. Jamison and R. Nowakowski, A Helly theorem for convexity in graphs, Discrete Math. 51 (1984) 35-39, doi: 10.1016/0012-365X(84)90021-9.

[10] J.W. Moon, Embedding tournaments in simple tournaments, Discrete Math. 2 (1972) 389-395, doi: 10.1016/0012-365X(72)90016-7.

[11] J. Nieminen, On path- and geodesic-convexity in digraphs, Glasnik Matematicki 16 (1981) 193-197.

[12] D.B. Parker, R.F. Westhoff and M.J. Wolf, On two-path convexity in multipartite tournaments, European J. Combin. 29 (2008) 641-651, doi: 10.1016/j.ejc.2007.03.009.

[13] D.B. Parker, R.F. Westhoff and M.J. Wolf, Two-path convexity in clone-free regular multipartite tournaments, Australas. J. Combin. 36 (2006) 177-196.

[14] A. Abueida, W.S. Diestelkamp, S.P. Edwards and D.B. Parker, Determining properties of a multipartite tournament from its lattice of convex subsets, Australas. J. Combin. 31 (2005) 217-230.

[15] D.B. Parker, R.F. Westhoff and M.J. Wolf, Two-path convexity and bipartite tournaments of small rank, to appear in Ars Combin.

[16] J.L. Pfaltz, Convexity in directed graphs, J. Combin. Theory 10 (1971) 143-152, doi: 10.1016/0095-8956(71)90074-8.

[17] N. Polat, A Helly theorem for geodesic convexity in strongly dismantlable graphs, Discrete Math. 140 (1995) 119-127, doi: 10.1016/0012-365X(93)E0178-7.

[18] J.C. Varlet, Convexity in Tournaments, Bull. Societe Royale des Sciences de Liege 45 (1976) 570-586.

[19] M.L.J van de Vel, Theory of Convex Structures (North Holland, Amsterdam, 1993).