A note on k-uniform self-complementary hypergraphs of given order
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 199-202.

Voir la notice de l'article provenant de la source Library of Science

We prove that a k-uniform self-complementary hypergraph of order n exists, if and only if nk is even.
Keywords: self-complementing permutation, self-complementary hypergraph, k-uniform hypergraph, binomial coefficients
@article{DMGT_2009_29_1_a11,
     author = {Szyma\'nski, Artur and Wojda, A.},
     title = {A note on k-uniform self-complementary hypergraphs of given order},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {199--202},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a11/}
}
TY  - JOUR
AU  - Szymański, Artur
AU  - Wojda, A.
TI  - A note on k-uniform self-complementary hypergraphs of given order
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 199
EP  - 202
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a11/
LA  - en
ID  - DMGT_2009_29_1_a11
ER  - 
%0 Journal Article
%A Szymański, Artur
%A Wojda, A.
%T A note on k-uniform self-complementary hypergraphs of given order
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 199-202
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a11/
%G en
%F DMGT_2009_29_1_a11
Szymański, Artur; Wojda, A. A note on k-uniform self-complementary hypergraphs of given order. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 199-202. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a11/

[1] J.W.L. Glaisher, On the residue of a binomial coefficient with respect to a prime modulus, Quarterly Journal of Mathematics 30 (1899) 150-156.

[2] S.H. Kimball, T.R. Hatcher, J.A. Riley and L. Moser, Solution to problem E1288: Odd binomial coefficients, Amer. Math. Monthly 65 (1958) 368-369, doi: 10.2307/2308812.

[3] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some self-complementary triple systems, Graphs Combin. 8 (1992) 259-276, doi: 10.1007/BF02349963.

[4] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358, doi: 10.1007/BF01234967.

[5] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.

[6] A. Szymański, A note on self-complementary 4-uniform hypergraphs, Opuscula Math. 25/2 (2005) 319-323.

[7] A.P. Wojda, Self-complementary hypergraphs, Discuss. Math. Graph Theory 26 (2006) 217-224, doi: 10.7151/dmgt.1314.