Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_1_a11, author = {Szyma\'nski, Artur and Wojda, A.}, title = {A note on k-uniform self-complementary hypergraphs of given order}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {199--202}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a11/} }
TY - JOUR AU - Szymański, Artur AU - Wojda, A. TI - A note on k-uniform self-complementary hypergraphs of given order JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 199 EP - 202 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a11/ LA - en ID - DMGT_2009_29_1_a11 ER -
Szymański, Artur; Wojda, A. A note on k-uniform self-complementary hypergraphs of given order. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 199-202. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a11/
[1] J.W.L. Glaisher, On the residue of a binomial coefficient with respect to a prime modulus, Quarterly Journal of Mathematics 30 (1899) 150-156.
[2] S.H. Kimball, T.R. Hatcher, J.A. Riley and L. Moser, Solution to problem E1288: Odd binomial coefficients, Amer. Math. Monthly 65 (1958) 368-369, doi: 10.2307/2308812.
[3] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some self-complementary triple systems, Graphs Combin. 8 (1992) 259-276, doi: 10.1007/BF02349963.
[4] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358, doi: 10.1007/BF01234967.
[5] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.
[6] A. Szymański, A note on self-complementary 4-uniform hypergraphs, Opuscula Math. 25/2 (2005) 319-323.
[7] A.P. Wojda, Self-complementary hypergraphs, Discuss. Math. Graph Theory 26 (2006) 217-224, doi: 10.7151/dmgt.1314.